Commit d6a8fb79 authored by Steven Fuller's avatar Steven Fuller

fmopl.c, fmopl.h: Added OPL2 emulation code from MAME

sd_oss.c: Sound/Music!

vi_xlib.c: Added a few more keys to XKeysymToScancode.

Rest: more cleanups and the like
parent ae6c51a9
CC = gcc
#CFLAGS = -Wall -O6 -fomit-frame-pointer -ffast-math -funroll-loops -mpentiumpro -mcpu=pentiumpro -march=pentiumpro
CFLAGS = -g -Wall
#CFLAGS = -Wall -O6 -fomit-frame-pointer -ffast-math -funroll-loops -mpentiumpro -mcpu=pentiumpro -march=pentiumpro -D_REENTRANT
CFLAGS = -g -Wall -D_REENTRANT
#CFLAGS = -Os -Wall
#CFLAGS = -Os -Wall -fomit-frame-pointer -ffast-math -mpentiumpro -mcpu=pentiumpro -march=pentiumpro
OBJS = objs.o misc.o id_ca.o id_vh.o id_us.o \
wl_act1.o wl_act2.o wl_agent.o wl_game.o \
wl_inter.o wl_menu.o wl_play.o wl_state.o wl_text.o wl_main.o \
wl_debug.o gfxsave.o sd_oss.o # sd_null.o
wl_debug.o gfxsave.o sd_oss.o fmopl.o # sd_null.o
ROBJS = wl_draw.o wl_scale.o
SOBJS = $(OBJS) $(ROBJS) vi_svga.o
XOBJS = $(OBJS) $(ROBJS) vi_xlib.o
LFLAGS = -lm
#LFLAGS = -lm
LFLAGS = -lm -lpthread
SLFLAGS = $(LFLAGS) -lvga
XLFLAGS = $(LFLAGS) -L/usr/X11R6/lib -lX11 -lXext -lXxf86vm -lXxf86dga
......
/*
**
** File: fmopl.c -- software implementation of FM sound generator
**
** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmulator development
**
** Version 0.37
**
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <math.h>
#include "fmopl.h"
#ifndef PI
#define PI 3.14159265358979323846
#endif
#define INLINE inline
void logerror(const char *text, ...)
{
}
/* -------------------- for debug --------------------- */
/* #define OPL_OUTPUT_LOG */
#ifdef OPL_OUTPUT_LOG
static FILE *opl_dbg_fp = NULL;
static FM_OPL *opl_dbg_opl[16];
static int opl_dbg_maxchip,opl_dbg_chip;
#endif
/* -------------------- preliminary define section --------------------- */
/* attack/decay rate time rate */
#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
#define FREQ_BITS 24 /* frequency turn */
/* counter bits = 20, octave 7 */
#define FREQ_RATE (1<<(FREQ_BITS-20))
#define TL_BITS (FREQ_BITS+2)
/* final output shift, limit minimum and maximum */
#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
/* -------------------- quality selection --------------------- */
/* sinwave entries */
/* used static memory = SIN_ENT * 4 (byte) */
#define SIN_ENT 2048
/* output level entries (envelope,sinwave) */
/* envelope counter lower bits */
#define ENV_BITS 16
/* envelope output entries */
#define EG_ENT 4096
/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
/* used static memory = EG_ENT*4 (byte) */
#define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
#define EG_DED EG_OFF
#define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
#define EG_AED EG_DST
#define EG_AST 0 /* ATTACK START */
#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
/* LFO table entries */
#define VIB_ENT 512
#define VIB_SHIFT (32-9)
#define AMS_ENT 512
#define AMS_SHIFT (32-9)
#define VIB_RATE 256
/* -------------------- local defines , macros --------------------- */
/* register number to channel number , slot offset */
#define SLOT1 0
#define SLOT2 1
/* envelope phase */
#define ENV_MOD_RR 0x00
#define ENV_MOD_DR 0x01
#define ENV_MOD_AR 0x02
/* -------------------- tables --------------------- */
static const int slot_array[32]=
{
0, 2, 4, 1, 3, 5,-1,-1,
6, 8,10, 7, 9,11,-1,-1,
12,14,16,13,15,17,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1
};
/* key scale level */
/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
#define DV (EG_STEP/2)
static const UINT32 KSL_TABLE[8*16]=
{
/* OCT 0 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
/* OCT 1 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
/* OCT 2 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
/* OCT 3 */
0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
/* OCT 4 */
0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
10.875/DV,11.250/DV,11.625/DV,12.000/DV,
/* OCT 5 */
0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
9.000/DV,10.125/DV,10.875/DV,11.625/DV,
12.000/DV,12.750/DV,13.125/DV,13.500/DV,
13.875/DV,14.250/DV,14.625/DV,15.000/DV,
/* OCT 6 */
0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
12.000/DV,13.125/DV,13.875/DV,14.625/DV,
15.000/DV,15.750/DV,16.125/DV,16.500/DV,
16.875/DV,17.250/DV,17.625/DV,18.000/DV,
/* OCT 7 */
0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
15.000/DV,16.125/DV,16.875/DV,17.625/DV,
18.000/DV,18.750/DV,19.125/DV,19.500/DV,
19.875/DV,20.250/DV,20.625/DV,21.000/DV
};
#undef DV
/* sustain level table (3db per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
static const INT32 SL_TABLE[16]={
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
};
#undef SC
#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
/* TL_TABLE[ 0 to TL_MAX ] : plus section */
/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
static INT32 *TL_TABLE;
/* pointers to TL_TABLE with sinwave output offset */
static INT32 **SIN_TABLE;
/* LFO table */
static INT32 *AMS_TABLE;
static INT32 *VIB_TABLE;
/* envelope output curve table */
/* attack + decay + OFF */
static INT32 ENV_CURVE[2*EG_ENT+1];
/* multiple table */
#define ML 2
static const UINT32 MUL_TABLE[16]= {
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
};
#undef ML
/* dummy attack / decay rate ( when rate == 0 ) */
static INT32 RATE_0[16]=
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
/* -------------------- static state --------------------- */
/* lock level of common table */
static int num_lock = 0;
/* work table */
static void *cur_chip = NULL; /* current chip point */
/* currenct chip state */
/* static OPLSAMPLE *bufL,*bufR; */
static OPL_CH *S_CH;
static OPL_CH *E_CH;
OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
static INT32 outd[1];
static INT32 ams;
static INT32 vib;
INT32 *ams_table;
INT32 *vib_table;
static INT32 amsIncr;
static INT32 vibIncr;
static INT32 feedback2; /* connect for SLOT 2 */
/* log output level */
#define LOG_ERR 3 /* ERROR */
#define LOG_WAR 2 /* WARNING */
#define LOG_INF 1 /* INFORMATION */
#define LOG_LEVEL LOG_INF
#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
/* --------------------- subroutines --------------------- */
INLINE int Limit( int val, int max, int min ) {
if ( val > max )
val = max;
else if ( val < min )
val = min;
return val;
}
/* status set and IRQ handling */
INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
{
/* set status flag */
OPL->status |= flag;
if(!(OPL->status & 0x80))
{
if(OPL->status & OPL->statusmask)
{ /* IRQ on */
OPL->status |= 0x80;
/* callback user interrupt handler (IRQ is OFF to ON) */
if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
}
}
}
/* status reset and IRQ handling */
INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
{
/* reset status flag */
OPL->status &=~flag;
if((OPL->status & 0x80))
{
if (!(OPL->status & OPL->statusmask) )
{
OPL->status &= 0x7f;
/* callback user interrupt handler (IRQ is ON to OFF) */
if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
}
}
}
/* IRQ mask set */
INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
{
OPL->statusmask = flag;
/* IRQ handling check */
OPL_STATUS_SET(OPL,0);
OPL_STATUS_RESET(OPL,0);
}
/* ----- key on ----- */
INLINE void OPL_KEYON(OPL_SLOT *SLOT)
{
/* sine wave restart */
SLOT->Cnt = 0;
/* set attack */
SLOT->evm = ENV_MOD_AR;
SLOT->evs = SLOT->evsa;
SLOT->evc = EG_AST;
SLOT->eve = EG_AED;
}
/* ----- key off ----- */
INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
{
if( SLOT->evm > ENV_MOD_RR)
{
/* set envelope counter from envleope output */
SLOT->evm = ENV_MOD_RR;
if( !(SLOT->evc&EG_DST) )
/*TODO*/ SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
//SLOT->evc = EG_DST;
SLOT->eve = EG_DED;
SLOT->evs = SLOT->evsr;
}
}
/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
/* return : envelope output */
INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
{
/* calcrate envelope generator */
if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
{
switch( SLOT->evm ){
case ENV_MOD_AR: /* ATTACK -> DECAY1 */
/* next DR */
SLOT->evm = ENV_MOD_DR;
SLOT->evc = EG_DST;
SLOT->eve = SLOT->SL;
SLOT->evs = SLOT->evsd;
break;
case ENV_MOD_DR: /* DECAY -> SL or RR */
SLOT->evc = SLOT->SL;
SLOT->eve = EG_DED;
if(SLOT->eg_typ)
{
SLOT->evs = 0;
}
else
{
SLOT->evm = ENV_MOD_RR;
SLOT->evs = SLOT->evsr;
}
break;
case ENV_MOD_RR: /* RR -> OFF */
SLOT->evc = EG_OFF;
SLOT->eve = EG_OFF+1;
SLOT->evs = 0;
break;
}
}
/* calcrate envelope */
return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
}
/* set algorythm connection */
static void set_algorythm( OPL_CH *CH)
{
INT32 *carrier = &outd[0];
CH->connect1 = CH->CON ? carrier : &feedback2;
CH->connect2 = carrier;
}
/* ---------- frequency counter for operater update ---------- */
INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
{
int ksr;
/* frequency step counter */
SLOT->Incr = CH->fc * SLOT->mul;
ksr = CH->kcode >> SLOT->KSR;
if( SLOT->ksr != ksr )
{
SLOT->ksr = ksr;
/* attack , decay rate recalcration */
SLOT->evsa = SLOT->AR[ksr];
SLOT->evsd = SLOT->DR[ksr];
SLOT->evsr = SLOT->RR[ksr];
}
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
/* set multi,am,vib,EG-TYP,KSR,mul */
INLINE void set_mul(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->mul = MUL_TABLE[v&0x0f];
SLOT->KSR = (v&0x10) ? 0 : 2;
SLOT->eg_typ = (v&0x20)>>5;
SLOT->vib = (v&0x40);
SLOT->ams = (v&0x80);
CALC_FCSLOT(CH,SLOT);
}
/* set ksl & tl */
INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
SLOT->ksl = ksl ? 3-ksl : 31;
SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
if( !(OPL->mode&0x80) )
{ /* not CSM latch total level */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
}
/* set attack rate & decay rate */
INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
int ar = v>>4;
int dr = v&0x0f;
SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
SLOT->evsa = SLOT->AR[SLOT->ksr];
if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
SLOT->evsd = SLOT->DR[SLOT->ksr];
if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
}
/* set sustain level & release rate */
INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
int sl = v>>4;
int rr = v & 0x0f;
SLOT->SL = SL_TABLE[sl];
if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
SLOT->RR = &OPL->DR_TABLE[rr<<2];
SLOT->evsr = SLOT->RR[SLOT->ksr];
if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
}
/* operator output calculator */
#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
/* ---------- calcrate one of channel ---------- */
INLINE void OPL_CALC_CH( OPL_CH *CH )
{
UINT32 env_out;
OPL_SLOT *SLOT;
feedback2 = 0;
/* SLOT 1 */
SLOT = &CH->SLOT[SLOT1];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connection */
if(CH->FB)
{
int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
CH->op1_out[1] = CH->op1_out[0];
*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
}
else
{
*CH->connect1 += OP_OUT(SLOT,env_out,0);
}
}else
{
CH->op1_out[1] = CH->op1_out[0];
CH->op1_out[0] = 0;
}
/* SLOT 2 */
SLOT = &CH->SLOT[SLOT2];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
outd[0] += OP_OUT(SLOT,env_out, feedback2);
}
}
/* ---------- calcrate rythm block ---------- */
#define WHITE_NOISE_db 6.0
INLINE void OPL_CALC_RH( OPL_CH *CH )
{
UINT32 env_tam,env_sd,env_top,env_hh;
int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
INT32 tone8;
OPL_SLOT *SLOT;
int env_out;
/* BD : same as FM serial mode and output level is large */
feedback2 = 0;
/* SLOT 1 */
SLOT = &CH[6].SLOT[SLOT1];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
if(CH[6].FB)
{
int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
CH[6].op1_out[1] = CH[6].op1_out[0];
feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
}
else
{
feedback2 = OP_OUT(SLOT,env_out,0);
}
}else
{
feedback2 = 0;
CH[6].op1_out[1] = CH[6].op1_out[0];
CH[6].op1_out[0] = 0;
}
/* SLOT 2 */
SLOT = &CH[6].SLOT[SLOT2];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
}
// SD (17) = mul14[fnum7] + white noise
// TAM (15) = mul15[fnum8]
// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
// HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
env_tam=OPL_CALC_SLOT(SLOT8_1);
env_top=OPL_CALC_SLOT(SLOT8_2);
env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
/* PG */
if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
else SLOT7_2->Cnt += (CH[7].fc*8);
if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
else SLOT8_1->Cnt += SLOT8_1->Incr;
if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
else SLOT8_2->Cnt += (CH[8].fc*48);
tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
/* SD */
if( env_sd < EG_ENT-1 )
outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
/* TAM */
if( env_tam < EG_ENT-1 )
outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
/* TOP-CY */
if( env_top < EG_ENT-1 )
outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
/* HH */
if( env_hh < EG_ENT-1 )
outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
}
/* ----------- initialize time tabls ----------- */
static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
{
int i;
double rate;
/* make attack rate & decay rate tables */
for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
for (i = 4;i <= 60;i++){
rate = OPL->freqbase; /* frequency rate */
if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
rate *= (double)(EG_ENT<<ENV_BITS);
OPL->AR_TABLE[i] = rate / ARRATE;
OPL->DR_TABLE[i] = rate / DRRATE;
}
for (i = 60;i < 76;i++)
{
OPL->AR_TABLE[i] = EG_AED-1;
OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
}
#if 0
for (i = 0;i < 64 ;i++){ /* make for overflow area */
LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
}
#endif
}
/* ---------- generic table initialize ---------- */
static int OPLOpenTable( void )
{
int s,t;
double rate;
int i,j;
double pom;
/* allocate dynamic tables */
if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
return 0;
if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
{
free(TL_TABLE);
return 0;
}
if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
{
free(TL_TABLE);
free(SIN_TABLE);
return 0;
}
if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
{
free(TL_TABLE);
free(SIN_TABLE);
free(AMS_TABLE);
return 0;
}
/* make total level table */
for (t = 0;t < EG_ENT-1 ;t++){
rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
TL_TABLE[ t] = (int)rate;
TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
/* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
}
/* fill volume off area */
for ( t = EG_ENT-1; t < TL_MAX ;t++){
TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
}
/* make sinwave table (total level offet) */
/* degree 0 = degree 180 = off */
SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
for (s = 1;s <= SIN_ENT/4;s++){
pom = sin(2*PI*s/SIN_ENT); /* sin */
pom = 20*log10(1/pom); /* decibel */
j = pom / EG_STEP; /* TL_TABLE steps */
/* degree 0 - 90 , degree 180 - 90 : plus section */
SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
/* degree 180 - 270 , degree 360 - 270 : minus section */
SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
/* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
}
for (s = 0;s < SIN_ENT;s++)
{
SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
}
/* envelope counter -> envelope output table */
for (i=0; i<EG_ENT; i++)
{
/* ATTACK curve */
pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
ENV_CURVE[i] = (int)pom;
/* DECAY ,RELEASE curve */
ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
}
/* off */
ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
/* make LFO ams table */
for (i=0; i<AMS_ENT; i++)
{
pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
}
/* make LFO vibrate table */
for (i=0; i<VIB_ENT; i++)
{
/* 100cent = 1seminote = 6% ?? */
pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
}
return 1;
}
static void OPLCloseTable( void )
{
free(TL_TABLE);
free(SIN_TABLE);
free(AMS_TABLE);
free(VIB_TABLE);
}
/* CSM Key Controll */
INLINE void CSMKeyControll(OPL_CH *CH)
{
OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
/* all key off */
OPL_KEYOFF(slot1);
OPL_KEYOFF(slot2);
/* total level latch */
slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
/* key on */
CH->op1_out[0] = CH->op1_out[1] = 0;
OPL_KEYON(slot1);
OPL_KEYON(slot2);
}
/* ---------- opl initialize ---------- */
static void OPL_initalize(FM_OPL *OPL)
{
int fn;
/* frequency base */
OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
/* make time tables */
init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
/* make fnumber -> increment counter table */
for( fn=0 ; fn < 1024 ; fn++ )
{
OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
}
/* LFO freq.table */
OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
}
/* ---------- write a OPL registers ---------- */
static void OPLWriteReg(FM_OPL *OPL, int r, int v)
{
OPL_CH *CH;
int slot;
int block_fnum;
switch(r&0xe0)
{
case 0x00: /* 00-1f:controll */
switch(r&0x1f)
{
case 0x01:
/* wave selector enable */
if(OPL->type&OPL_TYPE_WAVESEL)
{
OPL->wavesel = v&0x20;
if(!OPL->wavesel)
{
/* preset compatible mode */
int c;
for(c=0;c<OPL->max_ch;c++)
{
OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
}
}
}
return;
case 0x02: /* Timer 1 */
break;
case 0x03: /* Timer 2 */
return;
case 0x04: /* IRQ clear / mask and Timer enable */
return;
case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
if (v & 0x80) printf("CSM?\n");
OPL->mode = v;
return;
}
break;
case 0x20: /* am,vib,ksr,eg type,mul */
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_mul(OPL,slot,v);
return;
case 0x40:
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_ksl_tl(OPL,slot,v);
return;
case 0x60:
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_ar_dr(OPL,slot,v);
return;
case 0x80:
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_sl_rr(OPL,slot,v);
return;
case 0xa0:
switch(r)
{
case 0xbd:
/* amsep,vibdep,r,bd,sd,tom,tc,hh */
{
UINT8 rkey = OPL->rythm^v;
OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
OPL->rythm = v&0x3f;
if(OPL->rythm&0x20)
{
#if 0
usrintf_showmessage("OPL Rythm mode select");
#endif
/* BD key on/off */
if(rkey&0x10)
{
if(v&0x10)
{
OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
}
else
{
OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
}
}
/* SD key on/off */
if(rkey&0x08)
{
if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
}/* TAM key on/off */
if(rkey&0x04)
{
if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
}
/* TOP-CY key on/off */
if(rkey&0x02)
{
if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
}
/* HH key on/off */
if(rkey&0x01)
{
if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
}
}
}
return;
}
/* keyon,block,fnum */
if( (r&0x0f) > 8) return;
CH = &OPL->P_CH[r&0x0f];
if(!(r&0x10))
{ /* a0-a8 */
block_fnum = (CH->block_fnum&0x1f00) | v;
}
else
{ /* b0-b8 */
int keyon = (v>>5)&1;
block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
if(CH->keyon != keyon)
{
if( (CH->keyon=keyon) )
{
CH->op1_out[0] = CH->op1_out[1] = 0;
OPL_KEYON(&CH->SLOT[SLOT1]);
OPL_KEYON(&CH->SLOT[SLOT2]);
}
else
{
OPL_KEYOFF(&CH->SLOT[SLOT1]);
OPL_KEYOFF(&CH->SLOT[SLOT2]);
}
}
}
/* update */
if(CH->block_fnum != block_fnum)
{
int blockRv = 7-(block_fnum>>10);
int fnum = block_fnum&0x3ff;
CH->block_fnum = block_fnum;
CH->ksl_base = KSL_TABLE[block_fnum>>6];
CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
CH->kcode = CH->block_fnum>>9;
if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
}
return;
case 0xc0:
/* FB,C */
if( (r&0x0f) > 8) return;
CH = &OPL->P_CH[r&0x0f];
{
int feedback = (v>>1)&7;
CH->FB = feedback ? (8+1) - feedback : 0;
CH->CON = v&1;
set_algorythm(CH);
}
return;
case 0xe0: /* wave type */
slot = slot_array[r&0x1f];
if(slot == -1) return;
CH = &OPL->P_CH[slot/2];
if(OPL->wavesel)
{
/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
}
return;
}
}
/* lock/unlock for common table */
static int OPL_LockTable(void)
{
num_lock++;
if(num_lock>1) return 0;
/* first time */
cur_chip = NULL;
/* allocate total level table (128kb space) */
if( !OPLOpenTable() )
{
num_lock--;
return -1;
}
return 0;
}
static void OPL_UnLockTable(void)
{
if(num_lock) num_lock--;
if(num_lock) return;
/* last time */
cur_chip = NULL;
OPLCloseTable();
}
/* ---------- update one of chip ----------- */
void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
{
int i;
int data;
OPLSAMPLE *buf = buffer;
UINT32 amsCnt = OPL->amsCnt;
UINT32 vibCnt = OPL->vibCnt;
UINT8 rythm = OPL->rythm&0x20;
OPL_CH *CH,*R_CH;
if( (void *)OPL != cur_chip ){
cur_chip = (void *)OPL;
/* channel pointers */
S_CH = OPL->P_CH;
E_CH = &S_CH[9];
/* rythm slot */
SLOT7_1 = &S_CH[7].SLOT[SLOT1];
SLOT7_2 = &S_CH[7].SLOT[SLOT2];
SLOT8_1 = &S_CH[8].SLOT[SLOT1];
SLOT8_2 = &S_CH[8].SLOT[SLOT2];
/* LFO state */
amsIncr = OPL->amsIncr;
vibIncr = OPL->vibIncr;
ams_table = OPL->ams_table;
vib_table = OPL->vib_table;
}
R_CH = rythm ? &S_CH[6] : E_CH;
for( i=0; i < length ; i++ )
{
/* channel A channel B channel C */
/* LFO */
ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
outd[0] = 0;
/* FM part */
for(CH=S_CH ; CH < R_CH ; CH++)
OPL_CALC_CH(CH);
/* Rythn part */
if(rythm)
OPL_CALC_RH(S_CH);
/* limit check */
data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
/* store to sound buffer */
buf[i] = data >> OPL_OUTSB;
}
OPL->amsCnt = amsCnt;
OPL->vibCnt = vibCnt;
#ifdef OPL_OUTPUT_LOG
if(opl_dbg_fp)
{
for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
}
#endif
}
/* ---------- reset one of chip ---------- */
void OPLResetChip(FM_OPL *OPL)
{
int c,s;
int i;
/* reset chip */
OPL->mode = 0; /* normal mode */
OPL_STATUS_RESET(OPL,0x7f);
/* reset with register write */
OPLWriteReg(OPL,0x01,0); /* wavesel disable */
OPLWriteReg(OPL,0x02,0); /* Timer1 */
OPLWriteReg(OPL,0x03,0); /* Timer2 */
OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
/* reset OPerator paramater */
for( c = 0 ; c < OPL->max_ch ; c++ )
{
OPL_CH *CH = &OPL->P_CH[c];
/* OPL->P_CH[c].PAN = OPN_CENTER; */
for(s = 0 ; s < 2 ; s++ )
{
/* wave table */
CH->SLOT[s].wavetable = &SIN_TABLE[0];
/* CH->SLOT[s].evm = ENV_MOD_RR; */
CH->SLOT[s].evc = EG_OFF;
CH->SLOT[s].eve = EG_OFF+1;
CH->SLOT[s].evs = 0;
}
}
}
/* ---------- Create one of vietual YM3812 ---------- */
/* 'rate' is sampling rate and 'bufsiz' is the size of the */
FM_OPL *OPLCreate(int type, int clock, int rate)
{
char *ptr;
FM_OPL *OPL;
int state_size;
int max_ch = 9; /* normaly 9 channels */
if( OPL_LockTable() ==-1) return NULL;
/* allocate OPL state space */
state_size = sizeof(FM_OPL);
state_size += sizeof(OPL_CH)*max_ch;
/* allocate memory block */
ptr = malloc(state_size);
if(ptr==NULL) return NULL;
/* clear */
memset(ptr,0,state_size);
OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
/* set channel state pointer */
OPL->type = type;
OPL->clock = clock;
OPL->rate = rate;
OPL->max_ch = max_ch;
/* init grobal tables */
OPL_initalize(OPL);
/* reset chip */
OPLResetChip(OPL);
#ifdef OPL_OUTPUT_LOG
if(!opl_dbg_fp)
{
opl_dbg_fp = fopen("opllog.opl","wb");
opl_dbg_maxchip = 0;
}
if(opl_dbg_fp)
{
opl_dbg_opl[opl_dbg_maxchip] = OPL;
fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
type,
clock&0xff,
(clock/0x100)&0xff,
(clock/0x10000)&0xff,
(clock/0x1000000)&0xff);
opl_dbg_maxchip++;
}
#endif
return OPL;
}
/* ---------- Destroy a virtual YM3812 ---------- */
void OPLDestroy(FM_OPL *OPL)
{
#ifdef OPL_OUTPUT_LOG
if(opl_dbg_fp)
{
fclose(opl_dbg_fp);
opl_dbg_fp = NULL;
}
#endif
OPL_UnLockTable();
free(OPL);
}
/* ---------- YM3812 I/O interface ---------- */
int OPLWrite(FM_OPL *OPL,int a,int v)
{
#ifdef OPL_OUTPUT_LOG
if(opl_dbg_fp)
{
for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
}
#endif
OPLWriteReg(OPL, a, v);
return OPL->status>>7;
}
int OPLTimerOver(FM_OPL *OPL,int c)
{
if( c )
{ /* Timer B */
OPL_STATUS_SET(OPL,0x20);
}
else
{ /* Timer A */
OPL_STATUS_SET(OPL,0x40);
/* CSM mode key,TL controll */
if( OPL->mode & 0x80 )
{ /* CSM mode total level latch and auto key on */
int ch;
if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
for(ch=0;ch<9;ch++)
CSMKeyControll( &OPL->P_CH[ch] );
}
}
/* reload timer */
return OPL->status>>7;
}
#ifndef __FMOPL_H_
#define __FMOPL_H_
/* --- system optimize --- */
/* select bit size of output : 8 or 16 */
#define OPL_OUTPUT_BIT 16
typedef unsigned char UINT8; /* unsigned 8bit */
typedef unsigned short UINT16; /* unsigned 16bit */
typedef unsigned int UINT32; /* unsigned 32bit */
typedef signed char INT8; /* signed 8bit */
typedef signed short INT16; /* signed 16bit */
typedef signed int INT32; /* signed 32bit */
#if (OPL_OUTPUT_BIT==16)
typedef INT16 OPLSAMPLE;
#endif
#if (OPL_OUTPUT_BIT==8)
typedef unsigned char OPLSAMPLE;
#endif
typedef void (*OPL_TIMERHANDLER)(int channel,double interval_Sec);
typedef void (*OPL_IRQHANDLER)(int param,int irq);
typedef void (*OPL_UPDATEHANDLER)(int param,int min_interval_us);
/* !!!!! here is private section , do not access there member direct !!!!! */
#define OPL_TYPE_WAVESEL 0x01 /* waveform select */
#define OPL_TYPE_ADPCM 0x02 /* DELTA-T ADPCM unit */
#define OPL_TYPE_KEYBOARD 0x04 /* keyboard interface */
#define OPL_TYPE_IO 0x08 /* I/O port */
/* ---------- OPL one of slot ---------- */
typedef struct fm_opl_slot {
INT32 TL; /* total level :TL << 8 */
INT32 TLL; /* adjusted now TL */
UINT8 KSR; /* key scale rate :(shift down bit) */
INT32 *AR; /* attack rate :&AR_TABLE[AR<<2] */
INT32 *DR; /* decay rate :&DR_TALBE[DR<<2] */
INT32 SL; /* sustin level :SL_TALBE[SL] */
INT32 *RR; /* release rate :&DR_TABLE[RR<<2] */
UINT8 ksl; /* keyscale level :(shift down bits) */
UINT8 ksr; /* key scale rate :kcode>>KSR */
UINT32 mul; /* multiple :ML_TABLE[ML] */
UINT32 Cnt; /* frequency count : */
UINT32 Incr; /* frequency step : */
/* envelope generator state */
UINT8 eg_typ; /* envelope type flag */
UINT8 evm; /* envelope phase */
INT32 evc; /* envelope counter */
INT32 eve; /* envelope counter end point */
INT32 evs; /* envelope counter step */
INT32 evsa; /* envelope step for AR :AR[ksr] */
INT32 evsd; /* envelope step for DR :DR[ksr] */
INT32 evsr; /* envelope step for RR :RR[ksr] */
/* LFO */
UINT8 ams; /* ams flag */
UINT8 vib; /* vibrate flag */
/* wave selector */
INT32 **wavetable;
}OPL_SLOT;
/* ---------- OPL one of channel ---------- */
typedef struct fm_opl_channel {
OPL_SLOT SLOT[2];
UINT8 CON; /* connection type */
UINT8 FB; /* feed back :(shift down bit) */
INT32 *connect1; /* slot1 output pointer */
INT32 *connect2; /* slot2 output pointer */
INT32 op1_out[2]; /* slot1 output for selfeedback */
/* phase generator state */
UINT32 block_fnum; /* block+fnum : */
UINT8 kcode; /* key code : KeyScaleCode */
UINT32 fc; /* Freq. Increment base */
UINT32 ksl_base; /* KeyScaleLevel Base step */
UINT8 keyon; /* key on/off flag */
} OPL_CH;
/* OPL state */
typedef struct fm_opl_f {
UINT8 type; /* chip type */
int clock; /* master clock (Hz) */
int rate; /* sampling rate (Hz) */
double freqbase; /* frequency base */
double TimerBase; /* Timer base time (==sampling time) */
UINT8 address; /* address register */
UINT8 status; /* status flag */
UINT8 statusmask; /* status mask */
UINT32 mode; /* Reg.08 : CSM , notesel,etc. */
/* Timer */
int T[2]; /* timer counter */
UINT8 st[2]; /* timer enable */
/* FM channel slots */
OPL_CH *P_CH; /* pointer of CH */
int max_ch; /* maximum channel */
/* Rythm sention */
UINT8 rythm; /* Rythm mode , key flag */
INT32 AR_TABLE[75]; /* attack rate tables */
INT32 DR_TABLE[75]; /* decay rate tables */
UINT32 FN_TABLE[1024]; /* fnumber -> increment counter */
/* LFO */
INT32 *ams_table;
INT32 *vib_table;
INT32 amsCnt;
INT32 amsIncr;
INT32 vibCnt;
INT32 vibIncr;
/* wave selector enable flag */
UINT8 wavesel;
/* external event callback handler */
OPL_TIMERHANDLER TimerHandler; /* TIMER handler */
int TimerParam; /* TIMER parameter */
OPL_IRQHANDLER IRQHandler; /* IRQ handler */
int IRQParam; /* IRQ parameter */
OPL_UPDATEHANDLER UpdateHandler; /* stream update handler */
int UpdateParam; /* stream update parameter */
} FM_OPL;
/* ---------- Generic interface section ---------- */
#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL)
FM_OPL *OPLCreate(int type, int clock, int rate);
void OPLDestroy(FM_OPL *OPL);
void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset);
void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param);
void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param);
void OPLResetChip(FM_OPL *OPL);
int OPLWrite(FM_OPL *OPL,int a,int v);
unsigned char OPLRead(FM_OPL *OPL,int a);
int OPLTimerOver(FM_OPL *OPL,int c);
/* YM3626/YM3812 local section */
void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length);
#endif
......@@ -65,8 +65,8 @@ static long *audiostarts; /* array of offsets in audio / audiot */
static huffnode grhuffman[255];
static int grhandle; /* handle to VGAGRAPH */
static int maphandle; /* handle to MAPTEMP / GAMEMAPS */
static int audiohandle; /* handle to AUDIOT / AUDIO */
static int maphandle; /* handle to GAMEMAPS */
static int audiohandle; /* handle to AUDIOT */
SDMode oldsoundmode;
......@@ -96,7 +96,7 @@ static long GRFILEPOS(int c)
=============================================================================
*/
void CA_CannotOpen(char *string)
static void CA_CannotOpen(char *string)
{
/* TODO Ow, string must be a small one else boom */
char str[30];
......@@ -164,34 +164,6 @@ boolean CA_FarWrite(int handle, byte *source, long length)
return true;
}
/*
==========================
=
= CA_ReadFile
=
= Reads a file into an allready allocated buffer
=
==========================
*/
boolean CA_ReadFile(char *filename, memptr *ptr)
{
int handle;
long size;
if ((handle = open(filename, O_RDONLY | O_BINARY)) == -1)
return false;
size = filelength(handle);
if (!CA_FarRead(handle, *ptr, size)) {
close(handle);
return false;
}
close(handle);
return true;
}
/*
==========================
=
......@@ -231,7 +203,7 @@ boolean CA_WriteFile(char *filename, void *ptr, long length)
==========================
*/
boolean CA_LoadFile (char *filename, memptr *ptr)
boolean CA_LoadFile(char *filename, memptr *ptr)
{
int handle;
long size;
......@@ -323,7 +295,6 @@ void CAL_CarmackExpand(word *source, word *dest, word length)
outptr = dest;
while (length) {
/* LSB */
chlow = *inptr++; /* count */
chhigh = *inptr++;
......@@ -367,60 +338,6 @@ void CAL_CarmackExpand(word *source, word *dest, word length)
}
}
#if 0
void CAL_CarmackExpand(word *source, word *dest, word length)
{
word ch, chhigh, count, offset;
word *copyptr, *inptr, *outptr;
byte **byteinc = (byte **)&inptr;
length /= 2;
inptr = source;
outptr = dest;
while (length) {
ch = *inptr++;
chhigh = ch>>8;
if (chhigh == NEARTAG) {
count = ch&0xff;
if (!count) {
/* have to insert a word containing the tag byte */
ch |= **byteinc;
(*byteinc)++;
*outptr++ = ch;
length--;
} else {
offset = **byteinc;
(*byteinc)++;
copyptr = outptr - offset;
length -= count;
while (count--)
*outptr++ = *copyptr++;
}
} else if (chhigh == FARTAG) {
count = ch&0xff;
if (!count) {
/* have to insert a word containing the tag byte */
ch |= **byteinc;
(*byteinc)++;
*outptr++ = ch;
length --;
} else {
offset = *inptr++;
copyptr = dest + offset;
length -= count;
while (count--)
*outptr++ = *copyptr++;
}
} else {
*outptr++ = ch;
length--;
}
}
}
#endif
/*
======================
=
......@@ -497,7 +414,7 @@ static void CAL_SetupGrFile()
long chunkcomplen;
//
// load ???dict.ext (huffman dictionary for graphics files)
// load vgadict.ext (huffman dictionary for graphics files)
//
strcpy(fname, gdictname);
......@@ -509,7 +426,7 @@ static void CAL_SetupGrFile()
read(handle, &grhuffman, sizeof(grhuffman));
close(handle);
//
// load the data offsets from ???head.ext
// load the data offsets from vgahead.ext
//
MM_GetPtr((memptr)&grstarts, (NUMCHUNKS+1)*FILEPOSSIZE);
......@@ -688,11 +605,11 @@ void CA_Startup()
======================
*/
void CA_Shutdown (void)
void CA_Shutdown()
{
close (maphandle);
close (grhandle);
close (audiohandle);
close(maphandle);
close(grhandle);
close(audiohandle);
}
//===========================================================================
......@@ -731,7 +648,7 @@ void CA_CacheAudioChunk(int chunk)
void CA_UnCacheAudioChunk(int chunk)
{
/* TODO: For now the warning is ignorable since wl_menu.c does it */
/* TODO: For now the warning may be ignored since wl_menu.c causes it */
if (audiosegs[chunk] == 0) {
fprintf(stderr, "Trying to free null audio chunk %d!\n", chunk);
return;
......@@ -757,6 +674,7 @@ void CA_LoadAllSounds()
{
unsigned start, i;
#if 0
switch (oldsoundmode)
{
case sdm_PC:
......@@ -787,9 +705,10 @@ cachein:
default:
return;
}
#endif
for (i=0;i<NUMSOUNDS;i++,start++)
CA_CacheAudioChunk (start);
for (start = STARTADLIBSOUNDS, i = 0; i < NUMSOUNDS; i++, start++)
CA_CacheAudioChunk(start);
oldsoundmode = SoundMode;
}
......@@ -993,7 +912,7 @@ void CA_CacheMap(int mapnum)
//
size = 64*64*2;
for (plane = 0; plane<MAPPLANES; plane++)
for (plane = 0; plane < MAPPLANES; plane++)
{
pos = mapheaderseg[mapnum]->planestart[plane];
compressed = mapheaderseg[mapnum]->planelength[plane];
......@@ -1014,11 +933,10 @@ void CA_CacheMap(int mapnum)
*/
expanded = *source;
source++;
MM_GetPtr (&buffer2seg,expanded);
CAL_CarmackExpand (source, (word *)buffer2seg,expanded);
CA_RLEWexpand (((word *)buffer2seg)+1,*dest,size,
((mapfiletype *)tinf)->RLEWtag);
MM_FreePtr (&buffer2seg);
MM_GetPtr(&buffer2seg, expanded);
CAL_CarmackExpand(source, (word *)buffer2seg,expanded);
CA_RLEWexpand(((word *)buffer2seg)+1,*dest,size,((mapfiletype *)tinf)->RLEWtag);
MM_FreePtr(&buffer2seg);
MM_FreePtr(&bigbufferseg);
}
......@@ -1037,7 +955,7 @@ void CA_CacheMap(int mapnum)
======================
*/
void CA_UpLevel (void)
void CA_UpLevel()
{
/*
int i;
......@@ -1066,7 +984,7 @@ void CA_UpLevel (void)
======================
*/
void CA_DownLevel (void)
void CA_DownLevel(d)
{
/*
if (!ca_levelnum)
......@@ -1089,7 +1007,7 @@ void CA_DownLevel (void)
======================
*/
#if 0
void CA_ClearMarks (void)
void CA_ClearMarks()
{
int i;
......@@ -1110,7 +1028,7 @@ void CA_ClearMarks (void)
======================
*/
#if 0
void CA_ClearAllMarks (void)
void CA_ClearAllMarks()
{
memset (grneeded,0,sizeof(grneeded));
ca_levelbit = 1;
......@@ -1120,58 +1038,6 @@ void CA_ClearAllMarks (void)
//===========================================================================
/*
======================
=
= CA_FreeGraphics
=
======================
*/
#if 0
void CA_SetGrPurge (void)
{
int i;
//
// free graphics
//
CA_ClearMarks ();
for (i=0;i<NUMCHUNKS;i++)
if (grsegs[i])
MM_SetPurge ((memptr)&grsegs[i],3);
}
#endif
/*
======================
=
= CA_SetAllPurge
=
= Make everything possible purgable
=
======================
*/
#if 0
void CA_SetAllPurge (void)
{
int i;
//
// free sounds
//
for (i=0;i<NUMSNDCHUNKS;i++)
if (audiosegs[i])
MM_SetPurge ((memptr)&audiosegs[i],3);
//
// free graphics
//
CA_SetGrPurge ();
}
#endif
//===========================================================================
#if 0
/*
======================
......@@ -1182,7 +1048,7 @@ void CA_SetAllPurge (void)
*/
#define MAXEMPTYREAD 1024
void CA_CacheMarks (void)
void CA_CacheMarks()
{
int i,next,numcache;
long pos,endpos,nextpos,nextendpos,compressed;
......@@ -1334,7 +1200,7 @@ void MM_GetPtr(memptr *baseptr, unsigned long size)
====================
*/
void MM_FreePtr (memptr *baseptr)
void MM_FreePtr(memptr *baseptr)
{
/* TODO: add some sort of linked list for purging, etc */
free(*baseptr);
......@@ -1352,7 +1218,7 @@ void MM_FreePtr (memptr *baseptr)
=====================
*/
void MM_SetPurge (memptr *baseptr, int purge)
void MM_SetPurge(memptr *baseptr, int purge)
{
}
......@@ -1366,7 +1232,7 @@ void MM_SetPurge (memptr *baseptr, int purge)
=====================
*/
void MM_SetLock (memptr *baseptr, boolean locked)
void MM_SetLock(memptr *baseptr, boolean locked)
{
}
......@@ -1387,7 +1253,7 @@ void MM_SortMem()
static boolean PMStarted;
static int PageFile = -1;
static word ChunksInFile;
word ChunksInFile;
word PMSpriteStart, PMSoundStart;
word PMNumBlocks;
......@@ -1546,7 +1412,7 @@ void PM_NextFrame()
// Frame count overrun - kill the LRU hit entries & reset frame count
if (++PMFrameCount >= MAXLONG - 4)
{
for (i = 0;i < PMNumBlocks;i++)
for (i = 0; i < PMNumBlocks; i++)
PMPages[i].lastHit = 0;
PMFrameCount = 0;
}
......
......@@ -37,7 +37,6 @@ extern char extension[5],
boolean CA_FarRead(int handle, byte *dest, long length);
boolean CA_FarWrite(int handle, byte *source, long length);
boolean CA_ReadFile(char *filename, memptr *ptr);
boolean CA_LoadFile(char *filename, memptr *ptr);
boolean CA_WriteFile(char *filename, void *ptr, long length);
......@@ -46,7 +45,6 @@ void CA_RLEWexpand(word *source, word *dest, long length, word rlewtag);
void CA_Startup();
void CA_Shutdown();
void CA_SetGrPurge();
void CA_CacheAudioChunk(int chunk);
void CA_UnCacheAudioChunk(int chunk);
void CA_LoadAllSounds();
......@@ -58,8 +56,6 @@ void CA_UnCacheGrChunk(int chunk);
void CA_UpLevel();
void CA_DownLevel();
/*
void CA_SetAllPurge();
void CA_ClearMarks();
void CA_ClearAllMarks();
......
......@@ -49,7 +49,7 @@ extern int DigiMap[];
// Function prototypes
extern void SD_Startup(), SD_Shutdown();
extern void SD_PlaySound(soundnames sound);
extern boolean SD_PlaySound(soundnames sound);
extern void SD_StopSound(),
SD_WaitSoundDone(),
SD_StartMusic(MusicGroup *music),
......
......@@ -13,35 +13,17 @@ int DigiMap[LASTSOUND];
static boolean SD_Started;
static boolean nextsoundpos;
static int LeftPosition, RightPosition;
static boolean sqActive;
void SD_StopDigitized()
{
}
void SD_Poll()
{
}
void SD_SetPosition(int leftpos, int rightpos)
{
}
void SD_PlayDigitized(word which, int leftpos, int rightpos)
{
}
void SD_SetDigiDevice(SDSMode mode)
{
}
// Public routines
///////////////////////////////////////////////////////////////////////////
//
// SD_SetSoundMode() - Sets which sound hardware to use for sound effects
......@@ -65,7 +47,6 @@ boolean SD_SetMusicMode(SMMode mode)
///////////////////////////////////////////////////////////////////////////
//
// SD_Startup() - starts up the Sound Mgr
// Detects all additional sound hardware and installs my ISR
//
///////////////////////////////////////////////////////////////////////////
void SD_Startup()
......@@ -79,7 +60,6 @@ void SD_Startup()
///////////////////////////////////////////////////////////////////////////
//
// SD_Shutdown() - shuts down the Sound Mgr
// Removes sound ISR and turns off whatever sound hardware was active
//
///////////////////////////////////////////////////////////////////////////
void SD_Shutdown()
......@@ -100,17 +80,6 @@ void SD_Shutdown()
///////////////////////////////////////////////////////////////////////////
void SD_PlaySound(soundnames sound)
{
boolean ispos;
int lp,rp;
lp = LeftPosition;
rp = RightPosition;
LeftPosition = 0;
RightPosition = 0;
ispos = nextsoundpos;
nextsoundpos = false;
}
///////////////////////////////////////////////////////////////////////////
......@@ -298,9 +267,10 @@ static void SetSoundLoc(fixed gx, fixed gy)
///////////////////////////////////////////////////////////////////////////
static void SD_PositionSound(int leftvol, int rightvol)
{
LeftPosition = leftvol;
RightPosition = rightvol;
nextsoundpos = true;
}
static void SD_SetPosition(int leftpos, int rightpos)
{
}
/*
......
/* id_sd.c */
#include "wl_def.h"
#include "id_heads.h"
#include <pthread.h>
#include <sys/ioctl.h>
#include <sys/soundcard.h>
boolean SoundSourcePresent, AdLibPresent, SoundBlasterPresent;
#include "fmopl.h"
static boolean SoundPositioned;
boolean SoundSourcePresent, AdLibPresent, SoundBlasterPresent;
SDMode SoundMode, MusicMode;
SDSMode DigiMode;
/* ** */
static volatile boolean sqActive;
static fixed globalsoundx, globalsoundy;
static int leftchannel, rightchannel;
static volatile boolean SoundPositioned;
int DigiMap[LASTSOUND];
static boolean SD_Started;
static word *DigiList;
static boolean nextsoundpos;
static volatile boolean SD_Started;
static volatile int audiofd = -1;
static int LeftPosition, RightPosition;
static volatile int NextSound;
static volatile int SoundPlaying;
static volatile int SoundPlayPos;
static volatile int SoundPlayLen;
static volatile int SoundPage;
static volatile int SoundLen;
static volatile int L;
static volatile int R;
static byte *SoundData;
static boolean sqActive;
static FM_OPL *OPL;
static MusicGroup *Music;
static volatile int NewMusic;
void SD_StopDigitized()
{
}
static volatile int NewAdlib;
static volatile int AdlibPlaying;
void SD_Poll()
{
}
pthread_t hSoundThread;
void SD_SetPosition(int leftpos, int rightpos)
{
}
int CurDigi;
int CurAdlib;
void SD_PlayDigitized(word which, int leftpos, int rightpos)
{
}
boolean SPHack;
void SD_SetDigiDevice(SDSMode mode)
short int sndbuf[512];
short int musbuf[256];
void *SoundThread(void *data)
{
}
int i, snd;
int MusicLength;
int MusicCount;
word *MusicData;
word dat;
AdLibSound *AdlibSnd;
byte AdlibBlock;
byte *AdlibData;
int AdlibLength;
Instrument *inst;
MusicLength = 0;
MusicCount = 0;
MusicData = NULL;
AdlibBlock = 0;
AdlibData = NULL;
AdlibLength = -1;
while (SD_Started) {
if (audiofd != -1) {
if (NewAdlib != -1) {
AdlibPlaying = NewAdlib;
AdlibSnd = (AdLibSound *)audiosegs[STARTADLIBSOUNDS+AdlibPlaying];
inst = (Instrument *)&AdlibSnd->inst;
#define alChar 0x20
#define alScale 0x40
#define alAttack 0x60
#define alSus 0x80
#define alFeedCon 0xC0
#define alWave 0xE0
OPLWrite(OPL, 0 + alChar, 0);
OPLWrite(OPL, 0 + alScale, 0);
OPLWrite(OPL, 0 + alAttack, 0);
OPLWrite(OPL, 0 + alSus, 0);
OPLWrite(OPL, 0 + alWave, 0);
OPLWrite(OPL, 3 + alChar, 0);
OPLWrite(OPL, 3 + alScale, 0);
OPLWrite(OPL, 3 + alAttack, 0);
OPLWrite(OPL, 3 + alSus, 0);
OPLWrite(OPL, 3 + alWave, 0);
OPLWrite(OPL, 0xA0, 0);
OPLWrite(OPL, 0xB0, 0);
OPLWrite(OPL, 0 + alChar, inst->mChar);
OPLWrite(OPL, 0 + alScale, inst->mScale);
OPLWrite(OPL, 0 + alAttack, inst->mAttack);
OPLWrite(OPL, 0 + alSus, inst->mSus);
OPLWrite(OPL, 0 + alWave, inst->mWave);
OPLWrite(OPL, 3 + alChar, inst->cChar);
OPLWrite(OPL, 3 + alScale, inst->cScale);
OPLWrite(OPL, 3 + alAttack, inst->cAttack);
OPLWrite(OPL, 3 + alSus, inst->cSus);
OPLWrite(OPL, 3 + alWave, inst->cWave);
//OPLWrite(OPL, alFeedCon, inst->nConn);
OPLWrite(OPL, alFeedCon, 0);
AdlibBlock = ((AdlibSnd->block & 7) << 2) | 0x20;
AdlibData = (byte *)&AdlibSnd->data;
AdlibLength = AdlibSnd->common.length*5;
NewAdlib = -1;
}
// Public routines
if (NewMusic != -1) {
NewMusic = -1;
MusicLength = Music->length;
MusicData = Music->values;
MusicCount = 0;
}
for (i = 0; i < 4; i++) {
if (sqActive) {
while (MusicCount <= 0) {
dat = *MusicData++;
MusicCount = *MusicData++;
MusicLength -= 4;
OPLWrite(OPL, dat & 0xFF, dat >> 8);
}
if (MusicLength <= 0) {
NewMusic = 1;
}
MusicCount--;
}
///////////////////////////////////////////////////////////////////////////
//
// SD_SetSoundMode() - Sets which sound hardware to use for sound effects
//
///////////////////////////////////////////////////////////////////////////
boolean SD_SetSoundMode(SDMode mode)
{
return false;
if (AdlibPlaying != -1) {
if (AdlibLength == 0) {
OPLWrite(OPL, 0xB0, AdlibBlock);
} else if (AdlibLength == -1) {
OPLWrite(OPL, 0xA0, 00);
OPLWrite(OPL, 0xB0, AdlibBlock);
AdlibPlaying = -1;
} else if ((AdlibLength % 5) == 0) {
OPLWrite(OPL, 0xA0, *AdlibData);
OPLWrite(OPL, 0xB0, AdlibBlock);
AdlibData++;
}
AdlibLength--;
}
YM3812UpdateOne(OPL, &musbuf[i*64], 64);
}
if (NextSound != -1) {
SoundPlaying = NextSound;
SoundPage = DigiList[(SoundPlaying * 2) + 0];
SoundData = PM_GetSoundPage(SoundPage);
SoundLen = DigiList[(SoundPlaying * 2) + 1];
SoundPlayLen = (SoundLen < 4096) ? SoundLen : 4096;
SoundPlayPos = 0;
NextSound = -1;
}
for (i = 0; i < (sizeof(sndbuf)/sizeof(sndbuf[0])); i += 2) {
if (SoundPlaying != -1) {
if (SoundPositioned) {
snd = ((((signed short)((SoundData[(SoundPlayPos >> 16)] << 8)^0x8000))>>1)/(L+1))+musbuf[i/2];
if (snd > 32767)
snd = 32767;
if (snd < -32768)
snd = -32768;
sndbuf[i+0] = snd;
snd = ((((signed short)((SoundData[(SoundPlayPos >> 16)] << 8)^0x8000))>>1)/(R+1))+musbuf[i/2];
if (snd > 32767)
snd = 32767;
if (snd < -32768)
snd = -32768;
sndbuf[i+1] = snd;
} else {
snd = (((signed short)((SoundData[(SoundPlayPos >> 16)] << 8)^0x8000))>>2)+musbuf[i/2];
if (snd > 32767)
snd = 32767;
if (snd < -32768)
snd = -32768;
sndbuf[i+0] = snd;
snd = (((signed short)((SoundData[(SoundPlayPos >> 16)] << 8)^0x8000))>>2)+musbuf[i/2];
if (snd > 32767)
snd = 32767;
if (snd < -32768)
snd = -32768;
sndbuf[i+1] = snd;
}
SoundPlayPos += 10402; /* 7000 / 44100 * 65536 */
if ((SoundPlayPos >> 16) >= SoundPlayLen) {
SoundPlayPos = 0;
SoundLen -= 4096;
SoundPlayLen = (SoundLen < 4096) ? SoundLen : 4096;
if (SoundLen <= 0) {
SoundPlaying = -1;
SoundPositioned = false;
} else {
SoundPage++;
SoundData = PM_GetSoundPage(SoundPage);
}
}
} else {
sndbuf[i+0] = musbuf[i/2];
sndbuf[i+1] = musbuf[i/2];
}
}
write(audiofd, sndbuf, sizeof(sndbuf));
}
}
return NULL;
}
///////////////////////////////////////////////////////////////////////////
//
// SD_SetMusicMode() - sets the device to use for background music
//
///////////////////////////////////////////////////////////////////////////
boolean SD_SetMusicMode(SMMode mode)
void Blah()
{
return false;
memptr list;
word *p, pg;
int i;
MM_GetPtr(&list,PMPageSize);
p = PM_GetPage(ChunksInFile - 1);
memcpy((void *)list,(void *)p,PMPageSize);
pg = PMSoundStart;
for (i = 0;i < PMPageSize / (sizeof(word) * 2);i++,p += 2)
{
if (pg >= ChunksInFile - 1)
break;
pg += (p[1] + (PMPageSize - 1)) / PMPageSize;
}
MM_GetPtr((memptr *)&DigiList, i * sizeof(word) * 2);
memcpy((void *)DigiList, (void *)list, i * sizeof(word) * 2);
MM_FreePtr(&list);
}
///////////////////////////////////////////////////////////////////////////
//
// SD_Startup() - starts up the Sound Mgr
// Detects all additional sound hardware and installs my ISR
//
///////////////////////////////////////////////////////////////////////////
void SD_Startup()
{
audio_buf_info info;
int want, set;
int i;
if (SD_Started)
return;
Blah();
for (i = 0; i < LASTSOUND; i++)
DigiMap[i] = -1;
OPL = OPLCreate(OPL_TYPE_YM3812, 3579545, 44100);
audiofd = open("/dev/dsp", O_WRONLY);
if (audiofd == -1) {
perror("open(\"/dev/dsp\")");
return;
}
set = (8 << 16) | 10;
if (ioctl(audiofd, SNDCTL_DSP_SETFRAGMENT, &set) == -1) {
perror("ioctl SNDCTL_DSP_SETFRAGMENT");
return;
}
want = set = AFMT_S16_LE;
if (ioctl(audiofd, SNDCTL_DSP_SETFMT, &set) == -1) {
perror("ioctl SNDCTL_DSP_SETFMT");
return;
}
if (want != set) {
fprintf(stderr, "Format: Wanted %d, Got %d\n", want, set);
return;
}
want = set = 1;
if (ioctl(audiofd, SNDCTL_DSP_STEREO, &set) == -1) {
perror("ioctl SNDCTL_DSP_STEREO");
return;
}
if (want != set) {
fprintf(stderr, "Stereo: Wanted %d, Got %d\n", want, set);
return;
}
want = set = 44100;
if (ioctl(audiofd, SNDCTL_DSP_SPEED, &set) == -1) {
perror("ioctl SNDCTL_DSP_SPEED");
return;
}
if (want != set) {
fprintf(stderr, "Speed: Wanted %d, Got %d\n", want, set);
return;
}
if (ioctl(audiofd, SNDCTL_DSP_GETOSPACE, &info) == -1) {
perror("ioctl SNDCTL_DSP_GETOSPACE");
return;
}
printf("Fragments: %d\n", info.fragments);
printf("FragTotal: %d\n", info.fragstotal);
printf("Frag Size: %d\n", info.fragsize);
printf("Bytes : %d\n", info.bytes);
NextSound = -1;
SoundPlaying = -1;
CurDigi = -1;
CurAdlib = -1;
NewAdlib = -1;
NewMusic = -1;
AdlibPlaying = -1;
sqActive = false;
if (pthread_create(&hSoundThread, NULL, SoundThread, NULL) != 0) {
perror("pthread_create");
return;
}
SD_Started = true;
}
///////////////////////////////////////////////////////////////////////////
//
// SD_Shutdown() - shuts down the Sound Mgr
// Removes sound ISR and turns off whatever sound hardware was active
//
///////////////////////////////////////////////////////////////////////////
void SD_Shutdown()
{
if (!SD_Started)
......@@ -91,6 +336,10 @@ void SD_Shutdown()
SD_StopSound();
SD_Started = false;
if (audiofd != -1)
close(audiofd);
audiofd = -1;
}
///////////////////////////////////////////////////////////////////////////
......@@ -98,19 +347,34 @@ void SD_Shutdown()
// SD_PlaySound() - plays the specified sound on the appropriate hardware
//
///////////////////////////////////////////////////////////////////////////
void SD_PlaySound(soundnames sound)
boolean SD_PlaySound(soundnames sound)
{
boolean ispos;
int lp,rp;
SoundCommon *s;
lp = LeftPosition;
rp = RightPosition;
LeftPosition = 0;
RightPosition = 0;
s = (SoundCommon *)audiosegs[STARTADLIBSOUNDS + sound];
ispos = nextsoundpos;
nextsoundpos = false;
if (DigiMap[sound] != -1) {
if ((SoundPlaying == -1) || (CurDigi == -1) ||
(s->priority >= ((SoundCommon *)audiosegs[STARTADLIBSOUNDS+CurDigi])->priority) ) {
if (SPHack) {
SPHack = false;
} else {
SoundPositioned = false;
}
CurDigi = sound;
NextSound = DigiMap[sound];
return true;
}
return false;
}
if ((AdlibPlaying == -1) || (CurAdlib == -1) ||
(s->priority >= ((SoundCommon *)audiosegs[STARTADLIBSOUNDS+CurAdlib])->priority) ) {
CurAdlib = sound;
NewAdlib = sound;
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////
......@@ -121,7 +385,11 @@ void SD_PlaySound(soundnames sound)
///////////////////////////////////////////////////////////////////////////
word SD_SoundPlaying()
{
return false;
if (SoundPlaying != -1)
return CurDigi;
if (AdlibPlaying != -1)
return CurAdlib;
return 0;
}
///////////////////////////////////////////////////////////////////////////
......@@ -131,6 +399,7 @@ word SD_SoundPlaying()
///////////////////////////////////////////////////////////////////////////
void SD_StopSound()
{
SoundPlaying = -1;
}
///////////////////////////////////////////////////////////////////////////
......@@ -140,64 +409,9 @@ void SD_StopSound()
///////////////////////////////////////////////////////////////////////////
void SD_WaitSoundDone()
{
/* TODO: should also "work" when sound is disabled... */
while (SD_SoundPlaying())
;
while (SD_SoundPlaying()) ;
}
///////////////////////////////////////////////////////////////////////////
//
// SD_MusicOn() - turns on the sequencer
//
///////////////////////////////////////////////////////////////////////////
void SD_MusicOn()
{
sqActive = true;
}
///////////////////////////////////////////////////////////////////////////
//
// SD_MusicOff() - turns off the sequencer and any playing notes
//
///////////////////////////////////////////////////////////////////////////
void SD_MusicOff()
{
sqActive = false;
}
///////////////////////////////////////////////////////////////////////////
//
// SD_StartMusic() - starts playing the music pointed to
//
///////////////////////////////////////////////////////////////////////////
void SD_StartMusic(MusicGroup *music)
{
SD_MusicOff();
}
///////////////////////////////////////////////////////////////////////////
//
// SD_FadeOutMusic() - starts fading out the music. Call SD_MusicPlaying()
// to see if the fadeout is complete
//
///////////////////////////////////////////////////////////////////////////
void SD_FadeOutMusic()
{
}
///////////////////////////////////////////////////////////////////////////
//
// SD_MusicPlaying() - returns true if music is currently playing, false if
// not
//
///////////////////////////////////////////////////////////////////////////
boolean SD_MusicPlaying()
{
return false;
}
//===========================================================================
/*
==========================
=
......@@ -211,9 +425,6 @@ boolean SD_MusicPlaying()
==========================
*/
static fixed globalsoundx, globalsoundy;
static int leftchannel, rightchannel;
#define ATABLEMAX 15
static byte righttable[ATABLEMAX][ATABLEMAX * 2] = {
{ 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 0, 0, 0, 0, 0, 1, 3, 5, 8, 8, 8, 8, 8, 8, 8, 8},
......@@ -252,11 +463,9 @@ static byte lefttable[ATABLEMAX][ATABLEMAX * 2] = {
static void SetSoundLoc(fixed gx, fixed gy)
{
// fixed xt, yt;
fixed xt, yt;
int x, y;
#if 0
//
// translate point to view centered coordinates
//
gx -= viewx;
......@@ -275,7 +484,6 @@ static void SetSoundLoc(fixed gx, fixed gy)
xt = FixedByFrac(gx,viewsin);
yt = FixedByFrac(gy,viewcos);
y = (yt + xt) >> TILESHIFT;
#endif
if (y >= ATABLEMAX)
y = ATABLEMAX - 1;
......@@ -290,19 +498,6 @@ static void SetSoundLoc(fixed gx, fixed gy)
rightchannel = righttable[x][y + ATABLEMAX];
}
///////////////////////////////////////////////////////////////////////////
//
// SD_PositionSound() - Sets up a stereo imaging location for the next
// sound to be played. Each channel ranges from 0 to 15.
//
///////////////////////////////////////////////////////////////////////////
static void SD_PositionSound(int leftvol, int rightvol)
{
LeftPosition = leftvol;
RightPosition = rightvol;
nextsoundpos = true;
}
/*
==========================
=
......@@ -313,22 +508,114 @@ static void SD_PositionSound(int leftvol, int rightvol)
=
==========================
*/
void PlaySoundLocGlobal(word s,fixed gx,fixed gy)
{
SetSoundLoc(gx,gy);
SD_PositionSound(leftchannel,rightchannel);
SD_PlaySound(s);
void PlaySoundLocGlobal(word s, fixed gx, fixed gy)
{
SetSoundLoc(gx, gy);
SPHack = true;
if (SD_PlaySound(s)) {
SoundPositioned = true;
L = leftchannel;
R = rightchannel;
globalsoundx = gx;
globalsoundy = gy;
}
}
void UpdateSoundLoc(fixed x, fixed y, int angle)
{
if (SoundPositioned)
{
SetSoundLoc(globalsoundx,globalsoundy);
SD_SetPosition(leftchannel,rightchannel);
SetSoundLoc(globalsoundx, globalsoundy);
L = leftchannel;
R = rightchannel;
}
}
/* ** */
///////////////////////////////////////////////////////////////////////////
//
// SD_MusicOn() - turns on the sequencer
//
///////////////////////////////////////////////////////////////////////////
void SD_MusicOn()
{
sqActive = true;
}
///////////////////////////////////////////////////////////////////////////
//
// SD_MusicOff() - turns off the sequencer and any playing notes
//
///////////////////////////////////////////////////////////////////////////
void SD_MusicOff()
{
sqActive = false;
}
///////////////////////////////////////////////////////////////////////////
//
// SD_StartMusic() - starts playing the music pointed to
//
///////////////////////////////////////////////////////////////////////////
void SD_StartMusic(MusicGroup *music)
{
SD_MusicOff();
SD_MusicOn();
Music = music;
NewMusic = 1;
}
///////////////////////////////////////////////////////////////////////////
//
// SD_FadeOutMusic() - starts fading out the music. Call SD_MusicPlaying()
// to see if the fadeout is complete
//
///////////////////////////////////////////////////////////////////////////
void SD_FadeOutMusic()
{
SD_MusicOff();
}
///////////////////////////////////////////////////////////////////////////
//
// SD_MusicPlaying() - returns true if music is currently playing, false if
// not
//
///////////////////////////////////////////////////////////////////////////
boolean SD_MusicPlaying()
{
return sqActive;
}
//===========================================================================
void SD_Poll()
{
}
void SD_SetDigiDevice(SDSMode mode)
{
}
///////////////////////////////////////////////////////////////////////////
//
// SD_SetSoundMode() - Sets which sound hardware to use for sound effects
//
///////////////////////////////////////////////////////////////////////////
boolean SD_SetSoundMode(SDMode mode)
{
return false;
}
///////////////////////////////////////////////////////////////////////////
//
// SD_SetMusicMode() - sets the device to use for background music
//
///////////////////////////////////////////////////////////////////////////
boolean SD_SetMusicMode(SMMode mode)
{
return false;
}
......@@ -871,6 +871,26 @@ static Direction DirTable[] = // Quick lookup for total direction
int XKeysymToScancode(unsigned int keysym)
{
switch (keysym) {
case XK_1:
return sc_1;
case XK_2:
return sc_2;
case XK_3:
return sc_3;
case XK_4:
return sc_4;
case XK_a:
return sc_A;
case XK_b:
return sc_B;
case XK_i:
return sc_I;
case XK_l:
return sc_L;
case XK_m:
return sc_M;
case XK_t:
return sc_T;
case XK_Left:
case XK_KP_Left:
return sc_LeftArrow;
......
......@@ -11,16 +11,11 @@
unsigned wallheight[MAXVIEWWIDTH];
#define mindist MINDIST
//int pixelangle[MAXVIEWWIDTH]; /* TODO: i put these in wl_main */
//long finetangent[FINEANGLES/4];
//
// refresh variables
//
static fixed viewx,viewy; // the focal point
static int viewangle;
fixed viewx,viewy; // the focal point
int viewangle;
//
// ray casting variables
......@@ -110,7 +105,7 @@ static void TransformActor(objtype *ob)
ob->transx = nx;
ob->transy = ny;
if (nx < mindist) /* too close, don't overflow the divide */
if (nx < MINDIST) /* too close, don't overflow the divide */
{
ob->viewheight = 0;
return;
......@@ -173,7 +168,7 @@ static boolean TransformTile(int tx, int ty, int *dispx, int *dispheight)
//
// calculate perspective ratio
//
if (nx<mindist) /* too close, don't overflow the divide */
if (nx<MINDIST) /* too close, don't overflow the divide */
{
*dispheight = 0;
return false;
......@@ -219,8 +214,8 @@ static int CalcHeight()
//
// calculate perspective ratio (heightnumerator/(nx>>8))
//
if (nx<mindist)
nx=mindist; /* don't let divide overflow */
if (nx<MINDIST)
nx=MINDIST; /* don't let divide overflow */
return heightnumerator/(nx>>8);
}
......@@ -624,7 +619,7 @@ void ThreeDRefresh()
DrawPlayBorder();
ClearScreen();
WallRefresh ();
WallRefresh();
//
// draw all the scaled images
......@@ -637,15 +632,14 @@ void ThreeDRefresh()
//
if (fizzlein)
{
FizzleFade(xoffset, yoffset, viewwidth,viewheight,20,false);
FizzleFade(xoffset, yoffset, viewwidth, viewheight, 20, false);
fizzlein = false;
lasttimecount = 0; /* don't make a big tic count */
set_TimeCount(0);
}
VW_UpdateScreen ();
VW_UpdateScreen();
frameon++;
}
......@@ -831,12 +825,12 @@ static void AsmRefresh()
goto passhoriz;
xintercept = doorxhit;
yintercept = (ytile << 16) + 32768;
HitHorizDoor ();
HitHorizDoor();
}
}
else {
yintercept = ytile << 16;
HitHorizWall ();
HitHorizWall();
}
goto nextpix;
}
......
......@@ -3276,12 +3276,6 @@ void Message(char *string)
VW_UpdateScreen();
}
////////////////////////////////////////////////////////////////////
//
// THIS MAY BE FIXED A LITTLE LATER...
//
////////////////////////////////////////////////////////////////////
static int lastmusic;
void StartCPMusic(int song)
......@@ -3299,19 +3293,17 @@ void StartCPMusic(int song)
SD_StartMusic((MusicGroup *)audiosegs[STARTMUSIC + chunk]);
}
void FreeMusic(void)
void FreeMusic()
{
CA_UnCacheAudioChunk(STARTMUSIC + lastmusic);
}
///////////////////////////////////////////////////////////////////////////
//
// CHECK FOR PAUSE KEY (FOR MUSIC ONLY)
//
///////////////////////////////////////////////////////////////////////////
void CheckPause(void)
void CheckPause()
{
if (Paused)
{
......
......@@ -1328,7 +1328,7 @@ void PlayLoop()
UpdateSoundLoc(player->x, player->y, player->angle);
if (screenfaded)
VW_FadeIn ();
VW_FadeIn();
CheckKeys();
......@@ -1345,9 +1345,9 @@ void PlayLoop()
if (demoplayback)
{
if (IN_CheckAck ())
if (IN_CheckAck())
{
IN_ClearKeysDown ();
IN_ClearKeysDown();
playstate = ex_abort;
}
}
......@@ -1355,5 +1355,5 @@ void PlayLoop()
} while (!playstate && !startgame);
if (playstate != ex_died)
FinishPaletteShifts ();
FinishPaletteShifts();
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment