1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
/*
* Copyright (C) 2002-2010 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* $Id: risc_armv4le-thumb-niw.h,v 1.5 2009-06-27 12:51:10 c2woody Exp $ */
/* ARMv4 (little endian) backend by M-HT (thumb version with data pool) */
// temporary "lo" registers
#define templo1 HOST_v3
#define templo2 HOST_v4
#define templo3 HOST_v2
// register that holds function return values
#define FC_RETOP HOST_a1
// register used for address calculations,
#define FC_ADDR HOST_v1 // has to be saved across calls, see DRC_PROTECT_ADDR_REG
// register that holds the first parameter
#define FC_OP1 HOST_a1
// register that holds the second parameter
#define FC_OP2 HOST_a2
// special register that holds the third parameter for _R3 calls (byte accessible)
#define FC_OP3 HOST_a4
// register that holds byte-accessible temporary values
#define FC_TMP_BA1 HOST_a1
// register that holds byte-accessible temporary values
#define FC_TMP_BA2 HOST_a2
// temporary register for LEA
#define TEMP_REG_DRC HOST_a4
#ifdef DRC_USE_REGS_ADDR
// used to hold the address of "cpu_regs" - preferably filled in function gen_run_code
#define FC_REGS_ADDR HOST_v7
#endif
#ifdef DRC_USE_SEGS_ADDR
// used to hold the address of "Segs" - preferably filled in function gen_run_code
#define FC_SEGS_ADDR HOST_v8
#endif
// instruction encodings
// move
// mov dst, #imm @ 0 <= imm <= 255
#define MOV_IMM(dst, imm) (0x2000 + ((dst) << 8) + (imm) )
// mov dst, src
#define MOV_REG(dst, src) ADD_IMM3(dst, src, 0)
// mov dst, src
#define MOV_LO_HI(dst, src) (0x4640 + (dst) + (((src) - HOST_r8) << 3) )
// mov dst, src
#define MOV_HI_LO(dst, src) (0x4680 + ((dst) - HOST_r8) + ((src) << 3) )
// arithmetic
// add dst, src, #imm @ 0 <= imm <= 7
#define ADD_IMM3(dst, src, imm) (0x1c00 + (dst) + ((src) << 3) + ((imm) << 6) )
// add dst, #imm @ 0 <= imm <= 255
#define ADD_IMM8(dst, imm) (0x3000 + ((dst) << 8) + (imm) )
// add dst, src1, src2
#define ADD_REG(dst, src1, src2) (0x1800 + (dst) + ((src1) << 3) + ((src2) << 6) )
// add dst, pc, #imm @ 0 <= imm < 1024 & imm mod 4 = 0
#define ADD_LO_PC_IMM(dst, imm) (0xa000 + ((dst) << 8) + ((imm) >> 2) )
// sub dst, src1, src2
#define SUB_REG(dst, src1, src2) (0x1a00 + (dst) + ((src1) << 3) + ((src2) << 6) )
// sub dst, src, #imm @ 0 <= imm <= 7
#define SUB_IMM3(dst, src, imm) (0x1e00 + (dst) + ((src) << 3) + ((imm) << 6) )
// sub dst, #imm @ 0 <= imm <= 255
#define SUB_IMM8(dst, imm) (0x3800 + ((dst) << 8) + (imm) )
// neg dst, src
#define NEG(dst, src) (0x4240 + (dst) + ((src) << 3) )
// cmp dst, #imm @ 0 <= imm <= 255
#define CMP_IMM(dst, imm) (0x2800 + ((dst) << 8) + (imm) )
// nop
#define NOP (0x46c0)
// logical
// and dst, src
#define AND(dst, src) (0x4000 + (dst) + ((src) << 3) )
// eor dst, src
#define EOR(dst, src) (0x4040 + (dst) + ((src) << 3) )
// orr dst, src
#define ORR(dst, src) (0x4300 + (dst) + ((src) << 3) )
// shift/rotate
// lsl dst, src, #imm
#define LSL_IMM(dst, src, imm) (0x0000 + (dst) + ((src) << 3) + ((imm) << 6) )
// lsl dst, reg
#define LSL_REG(dst, reg) (0x4080 + (dst) + ((reg) << 3) )
// lsr dst, src, #imm
#define LSR_IMM(dst, src, imm) (0x0800 + (dst) + ((src) << 3) + ((imm) << 6) )
// lsr dst, reg
#define LSR_REG(dst, reg) (0x40c0 + (dst) + ((reg) << 3) )
// asr dst, src, #imm
#define ASR_IMM(dst, src, imm) (0x1000 + (dst) + ((src) << 3) + ((imm) << 6) )
// asr dst, reg
#define ASR_REG(dst, reg) (0x4100 + (dst) + ((reg) << 3) )
// ror dst, reg
#define ROR_REG(dst, reg) (0x41c0 + (dst) + ((reg) << 3) )
// load
// ldr reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0
#define LDR_IMM(reg, addr, imm) (0x6800 + (reg) + ((addr) << 3) + ((imm) << 4) )
// ldrh reg, [addr, #imm] @ 0 <= imm < 64 & imm mod 2 = 0
#define LDRH_IMM(reg, addr, imm) (0x8800 + (reg) + ((addr) << 3) + ((imm) << 5) )
// ldrb reg, [addr, #imm] @ 0 <= imm < 32
#define LDRB_IMM(reg, addr, imm) (0x7800 + (reg) + ((addr) << 3) + ((imm) << 6) )
// ldr reg, [pc, #imm] @ 0 <= imm < 1024 & imm mod 4 = 0
#define LDR_PC_IMM(reg, imm) (0x4800 + ((reg) << 8) + ((imm) >> 2) )
// store
// str reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0
#define STR_IMM(reg, addr, imm) (0x6000 + (reg) + ((addr) << 3) + ((imm) << 4) )
// strh reg, [addr, #imm] @ 0 <= imm < 64 & imm mod 2 = 0
#define STRH_IMM(reg, addr, imm) (0x8000 + (reg) + ((addr) << 3) + ((imm) << 5) )
// strb reg, [addr, #imm] @ 0 <= imm < 32
#define STRB_IMM(reg, addr, imm) (0x7000 + (reg) + ((addr) << 3) + ((imm) << 6) )
// branch
// beq pc+imm @ 0 <= imm < 256 & imm mod 2 = 0
#define BEQ_FWD(imm) (0xd000 + ((imm) >> 1) )
// bne pc+imm @ 0 <= imm < 256 & imm mod 2 = 0
#define BNE_FWD(imm) (0xd100 + ((imm) >> 1) )
// bgt pc+imm @ 0 <= imm < 256 & imm mod 2 = 0
#define BGT_FWD(imm) (0xdc00 + ((imm) >> 1) )
// b pc+imm @ 0 <= imm < 2048 & imm mod 2 = 0
#define B_FWD(imm) (0xe000 + ((imm) >> 1) )
// bx reg
#define BX(reg) (0x4700 + ((reg) << 3) )
// data pool defines
#define CACHE_DATA_JUMP (2)
#define CACHE_DATA_ALIGN (32)
#define CACHE_DATA_MIN (32)
#define CACHE_DATA_MAX (288)
// data pool variables
static Bit8u * cache_datapos = NULL; // position of data pool in the cache block
static Bit32u cache_datasize = 0; // total size of data pool
static Bit32u cache_dataindex = 0; // used size of data pool = index of free data item (in bytes) in data pool
// forwarded function
static void INLINE gen_create_branch_short(void * func);
// function to check distance to data pool
// if too close, then generate jump after data pool
static void cache_checkinstr(Bit32u size) {
if (cache_datasize == 0) {
if (cache_datapos != NULL) {
if (cache.pos + size + CACHE_DATA_JUMP >= cache_datapos) {
cache_datapos = NULL;
}
}
return;
}
if (cache.pos + size + CACHE_DATA_JUMP <= cache_datapos) return;
{
register Bit8u * newcachepos;
newcachepos = cache_datapos + cache_datasize;
gen_create_branch_short(newcachepos);
cache.pos = newcachepos;
}
if (cache.pos + CACHE_DATA_MAX + CACHE_DATA_ALIGN >= cache.block.active->cache.start + cache.block.active->cache.size &&
cache.pos + CACHE_DATA_MIN + CACHE_DATA_ALIGN + (CACHE_DATA_ALIGN - CACHE_ALIGN) < cache.block.active->cache.start + cache.block.active->cache.size)
{
cache_datapos = (Bit8u *) (((Bitu)cache.block.active->cache.start + cache.block.active->cache.size - CACHE_DATA_ALIGN) & ~(CACHE_DATA_ALIGN - 1));
} else {
register Bit32u cachemodsize;
cachemodsize = (cache.pos - cache.block.active->cache.start) & (CACHE_MAXSIZE - 1);
if (cachemodsize + CACHE_DATA_MAX + CACHE_DATA_ALIGN <= CACHE_MAXSIZE ||
cachemodsize + CACHE_DATA_MIN + CACHE_DATA_ALIGN + (CACHE_DATA_ALIGN - CACHE_ALIGN) > CACHE_MAXSIZE)
{
cache_datapos = (Bit8u *) (((Bitu)cache.pos + CACHE_DATA_MAX) & ~(CACHE_DATA_ALIGN - 1));
} else {
cache_datapos = (Bit8u *) (((Bitu)cache.pos + (CACHE_MAXSIZE - CACHE_DATA_ALIGN) - cachemodsize) & ~(CACHE_DATA_ALIGN - 1));
}
}
cache_datasize = 0;
cache_dataindex = 0;
}
// function to reserve item in data pool
// returns address of item
static Bit8u * cache_reservedata(void) {
// if data pool not yet initialized, then initialize data pool
if (GCC_UNLIKELY(cache_datapos == NULL)) {
if (cache.pos + CACHE_DATA_MIN + CACHE_DATA_ALIGN < cache.block.active->cache.start + CACHE_DATA_MAX) {
cache_datapos = (Bit8u *) (((Bitu)cache.block.active->cache.start + CACHE_DATA_MAX) & ~(CACHE_DATA_ALIGN - 1));
}
}
// if data pool not yet used, then set data pool
if (cache_datasize == 0) {
// set data pool address is too close (or behind) cache.pos then set new data pool size
if (cache.pos + CACHE_DATA_MIN + CACHE_DATA_JUMP /*+ CACHE_DATA_ALIGN*/ > cache_datapos) {
if (cache.pos + CACHE_DATA_MAX + CACHE_DATA_ALIGN >= cache.block.active->cache.start + cache.block.active->cache.size &&
cache.pos + CACHE_DATA_MIN + CACHE_DATA_ALIGN + (CACHE_DATA_ALIGN - CACHE_ALIGN) < cache.block.active->cache.start + cache.block.active->cache.size)
{
cache_datapos = (Bit8u *) (((Bitu)cache.block.active->cache.start + cache.block.active->cache.size - CACHE_DATA_ALIGN) & ~(CACHE_DATA_ALIGN - 1));
} else {
register Bit32u cachemodsize;
cachemodsize = (cache.pos - cache.block.active->cache.start) & (CACHE_MAXSIZE - 1);
if (cachemodsize + CACHE_DATA_MAX + CACHE_DATA_ALIGN <= CACHE_MAXSIZE ||
cachemodsize + CACHE_DATA_MIN + CACHE_DATA_ALIGN + (CACHE_DATA_ALIGN - CACHE_ALIGN) > CACHE_MAXSIZE)
{
cache_datapos = (Bit8u *) (((Bitu)cache.pos + CACHE_DATA_MAX) & ~(CACHE_DATA_ALIGN - 1));
} else {
cache_datapos = (Bit8u *) (((Bitu)cache.pos + (CACHE_MAXSIZE - CACHE_DATA_ALIGN) - cachemodsize) & ~(CACHE_DATA_ALIGN - 1));
}
}
}
// set initial data pool size
cache_datasize = CACHE_DATA_ALIGN;
}
// if data pool is full, then enlarge data pool
if (cache_dataindex == cache_datasize) {
cache_datasize += CACHE_DATA_ALIGN;
}
cache_dataindex += 4;
return (cache_datapos + (cache_dataindex - 4));
}
static void cache_block_before_close(void) {
// if data pool in use, then resize cache block to include the data pool
if (cache_datasize != 0)
{
cache.pos = cache_datapos + cache_dataindex;
}
// clear the values before next use
cache_datapos = NULL;
cache_datasize = 0;
cache_dataindex = 0;
}
// move a full register from reg_src to reg_dst
static void gen_mov_regs(HostReg reg_dst,HostReg reg_src) {
if(reg_src == reg_dst) return;
cache_checkinstr(2);
cache_addw( MOV_REG(reg_dst, reg_src) ); // mov reg_dst, reg_src
}
// move a 32bit constant value into dest_reg
static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
if ((imm & 0xffffff00) == 0) {
cache_checkinstr(2);
cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm)
} else if ((imm & 0xffff00ff) == 0) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, imm >> 8) ); // mov dest_reg, #(imm >> 8)
cache_addw( LSL_IMM(dest_reg, dest_reg, 8) ); // lsl dest_reg, dest_reg, #8
} else if ((imm & 0xff00ffff) == 0) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, imm >> 16) ); // mov dest_reg, #(imm >> 16)
cache_addw( LSL_IMM(dest_reg, dest_reg, 16) ); // lsl dest_reg, dest_reg, #16
} else if ((imm & 0x00ffffff) == 0) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, imm >> 24) ); // mov dest_reg, #(imm >> 24)
cache_addw( LSL_IMM(dest_reg, dest_reg, 24) ); // lsl dest_reg, dest_reg, #24
} else {
Bit32u diff;
cache_checkinstr(4);
diff = imm - ((Bit32u)cache.pos+4);
if ((diff < 1024) && ((imm & 0x03) == 0)) {
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( ADD_LO_PC_IMM(dest_reg, diff >> 2) ); // add dest_reg, pc, #(diff >> 2)
} else {
cache_addw( NOP ); // nop
cache_addw( ADD_LO_PC_IMM(dest_reg, (diff - 2) >> 2) ); // add dest_reg, pc, #((diff - 2) >> 2)
}
} else {
Bit8u *datapos;
datapos = cache_reservedata();
*(Bit32u*)datapos=imm;
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( LDR_PC_IMM(dest_reg, datapos - (cache.pos + 4)) ); // ldr dest_reg, [pc, datapos]
} else {
cache_addw( LDR_PC_IMM(dest_reg, datapos - (cache.pos + 2)) ); // ldr dest_reg, [pc, datapos]
}
}
}
}
// helper function for gen_mov_word_to_reg
static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,HostReg data_reg) {
// alignment....
if (dword) {
if ((Bit32u)data & 3) {
if ( ((Bit32u)data & 3) == 2 ) {
cache_checkinstr(8);
cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
cache_addw( LDRH_IMM(templo1, data_reg, 2) ); // ldrh templo1, [data_reg, #2]
cache_addw( LSL_IMM(templo1, templo1, 16) ); // lsl templo1, templo1, #16
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
} else {
cache_checkinstr(16);
cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addw( ADD_IMM3(templo1, data_reg, 1) ); // add templo1, data_reg, #1
cache_addw( LDRH_IMM(templo1, templo1, 0) ); // ldrh templo1, [templo1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
cache_addw( LDRB_IMM(templo1, data_reg, 3) ); // ldrb templo1, [data_reg, #3]
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
}
} else {
cache_checkinstr(2);
cache_addw( LDR_IMM(dest_reg, data_reg, 0) ); // ldr dest_reg, [data_reg]
}
} else {
if ((Bit32u)data & 1) {
cache_checkinstr(8);
cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addw( LDRB_IMM(templo1, data_reg, 1) ); // ldrb templo1, [data_reg, #1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
} else {
cache_checkinstr(2);
cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
}
}
}
// move a 32bit (dword==true) or 16bit (dword==false) value from memory into dest_reg
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_word_to_reg(HostReg dest_reg,void* data,bool dword) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, templo2);
}
// move a 16bit constant value into dest_reg
// the upper 16bit of the destination register may be destroyed
static void INLINE gen_mov_word_to_reg_imm(HostReg dest_reg,Bit16u imm) {
gen_mov_dword_to_reg_imm(dest_reg, (Bit32u)imm);
}
// helper function for gen_mov_word_from_reg
static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword, HostReg data_reg) {
// alignment....
if (dword) {
if ((Bit32u)dest & 3) {
if ( ((Bit32u)dest & 3) == 2 ) {
cache_checkinstr(8);
cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 16) ); // lsr templo1, templo1, #16
cache_addw( STRH_IMM(templo1, data_reg, 2) ); // strh templo1, [data_reg, #2]
} else {
cache_checkinstr(20);
cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8
cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 16) ); // lsr templo1, templo1, #16
cache_addw( STRB_IMM(templo1, data_reg, 2) ); // strb templo1, [data_reg, #2]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 24) ); // lsr templo1, templo1, #24
cache_addw( STRB_IMM(templo1, data_reg, 3) ); // strb templo1, [data_reg, #3]
}
} else {
cache_checkinstr(2);
cache_addw( STR_IMM(src_reg, data_reg, 0) ); // str src_reg, [data_reg]
}
} else {
if ((Bit32u)dest & 1) {
cache_checkinstr(8);
cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8
cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1]
} else {
cache_checkinstr(2);
cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
}
}
}
// move 32bit (dword==true) or 16bit (dword==false) of a register into memory
static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, templo2);
}
// move an 8bit value from memory into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low(HostReg dest_reg,void* data) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)data);
cache_checkinstr(2);
cache_addw( LDRB_IMM(dest_reg, templo1, 0) ); // ldrb dest_reg, [templo1]
}
// move an 8bit value from memory into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_byte_to_reg_low_canuseword(HostReg dest_reg,void* data) {
gen_mov_byte_to_reg_low(dest_reg, data);
}
// move an 8bit constant value into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low_imm(HostReg dest_reg,Bit8u imm) {
cache_checkinstr(2);
cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm)
}
// move an 8bit constant value into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_byte_to_reg_low_imm_canuseword(HostReg dest_reg,Bit8u imm) {
gen_mov_byte_to_reg_low_imm(dest_reg, imm);
}
// move the lowest 8bit of a register into memory
static void gen_mov_byte_from_reg_low(HostReg src_reg,void* dest) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)dest);
cache_checkinstr(2);
cache_addw( STRB_IMM(src_reg, templo1, 0) ); // strb src_reg, [templo1]
}
// convert an 8bit word to a 32bit dword
// the register is zero-extended (sign==false) or sign-extended (sign==true)
static void gen_extend_byte(bool sign,HostReg reg) {
cache_checkinstr(4);
cache_addw( LSL_IMM(reg, reg, 24) ); // lsl reg, reg, #24
if (sign) {
cache_addw( ASR_IMM(reg, reg, 24) ); // asr reg, reg, #24
} else {
cache_addw( LSR_IMM(reg, reg, 24) ); // lsr reg, reg, #24
}
}
// convert a 16bit word to a 32bit dword
// the register is zero-extended (sign==false) or sign-extended (sign==true)
static void gen_extend_word(bool sign,HostReg reg) {
cache_checkinstr(4);
cache_addw( LSL_IMM(reg, reg, 16) ); // lsl reg, reg, #16
if (sign) {
cache_addw( ASR_IMM(reg, reg, 16) ); // asr reg, reg, #16
} else {
cache_addw( LSR_IMM(reg, reg, 16) ); // lsr reg, reg, #16
}
}
// add a 32bit value from memory to a full register
static void gen_add(HostReg reg,void* op) {
gen_mov_word_to_reg(templo3, op, 1);
cache_checkinstr(2);
cache_addw( ADD_REG(reg, reg, templo3) ); // add reg, reg, templo3
}
// add a 32bit constant value to a full register
static void gen_add_imm(HostReg reg,Bit32u imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
}
// and a 32bit constant value with a full register
static void gen_and_imm(HostReg reg,Bit32u imm) {
if(imm == 0xffffffff) return;
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( AND(reg, templo1) ); // and reg, templo1
}
// move a 32bit constant value into memory
static void gen_mov_direct_dword(void* dest,Bit32u imm) {
gen_mov_dword_to_reg_imm(templo3, imm);
gen_mov_word_from_reg(templo3, dest, 1);
}
// move an address into memory
static void INLINE gen_mov_direct_ptr(void* dest,DRC_PTR_SIZE_IM imm) {
gen_mov_direct_dword(dest,(Bit32u)imm);
}
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, 1, templo2);
cache_checkinstr(2);
if (imm >= 0) {
cache_addw( ADD_IMM8(templo3, (Bit32s)imm) ); // add templo3, #(imm)
} else {
cache_addw( SUB_IMM8(templo3, -((Bit32s)imm)) ); // sub templo3, #(-imm)
}
gen_mov_word_from_reg_helper(templo3, dest, 1, templo2);
}
// add a 32bit (dword==true) or 16bit (dword==false) constant value to a memory value
static void gen_add_direct_word(void* dest,Bit32u imm,bool dword) {
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_add_direct_byte(dest,(Bit8s)imm);
return;
}
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
if (dword) {
gen_mov_dword_to_reg_imm(templo1, imm);
} else {
gen_mov_word_to_reg_imm(templo1, (Bit16u)imm);
}
cache_checkinstr(2);
cache_addw( ADD_REG(templo3, templo3, templo1) ); // add templo3, templo3, templo1
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, 1, templo2);
cache_checkinstr(2);
if (imm >= 0) {
cache_addw( SUB_IMM8(templo3, (Bit32s)imm) ); // sub templo3, #(imm)
} else {
cache_addw( ADD_IMM8(templo3, -((Bit32s)imm)) ); // add templo3, #(-imm)
}
gen_mov_word_from_reg_helper(templo3, dest, 1, templo2);
}
// subtract a 32bit (dword==true) or 16bit (dword==false) constant value from a memory value
static void gen_sub_direct_word(void* dest,Bit32u imm,bool dword) {
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_sub_direct_byte(dest,(Bit8s)imm);
return;
}
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
if (dword) {
gen_mov_dword_to_reg_imm(templo1, imm);
} else {
gen_mov_word_to_reg_imm(templo1, (Bit16u)imm);
}
cache_checkinstr(2);
cache_addw( SUB_REG(templo3, templo3, templo1) ); // sub templo3, templo3, templo1
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
// effective address calculation, destination is dest_reg
// scale_reg is scaled by scale (scale_reg*(2^scale)) and
// added to dest_reg, then the immediate value is added
static INLINE void gen_lea(HostReg dest_reg,HostReg scale_reg,Bitu scale,Bits imm) {
if (scale) {
cache_checkinstr(4);
cache_addw( LSL_IMM(templo1, scale_reg, scale) ); // lsl templo1, scale_reg, #(scale)
cache_addw( ADD_REG(dest_reg, dest_reg, templo1) ); // add dest_reg, dest_reg, templo1
} else {
cache_checkinstr(2);
cache_addw( ADD_REG(dest_reg, dest_reg, scale_reg) ); // add dest_reg, dest_reg, scale_reg
}
gen_add_imm(dest_reg, imm);
}
// effective address calculation, destination is dest_reg
// dest_reg is scaled by scale (dest_reg*(2^scale)),
// then the immediate value is added
static INLINE void gen_lea(HostReg dest_reg,Bitu scale,Bits imm) {
if (scale) {
cache_checkinstr(2);
cache_addw( LSL_IMM(dest_reg, dest_reg, scale) ); // lsl dest_reg, dest_reg, #(scale)
}
gen_add_imm(dest_reg, imm);
}
// helper function for gen_call_function_raw and gen_call_function_setup
static void gen_call_function_helper(void * func) {
Bit8u *datapos;
datapos = cache_reservedata();
*(Bit32u*)datapos=(Bit32u)func;
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 4)) ); // ldr templo1, [pc, datapos]
cache_addw( ADD_LO_PC_IMM(templo2, 4) ); // adr templo2, after_call (add templo2, pc, #4)
cache_addw( MOV_HI_LO(HOST_lr, templo2) ); // mov lr, templo2
cache_addw( BX(templo1) ); // bx templo1 --- switch to arm state
} else {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 2)) ); // ldr templo1, [pc, datapos]
cache_addw( ADD_LO_PC_IMM(templo2, 4) ); // adr templo2, after_call (add templo2, pc, #4)
cache_addw( MOV_HI_LO(HOST_lr, templo2) ); // mov lr, templo2
cache_addw( BX(templo1) ); // bx templo1 --- switch to arm state
cache_addw( NOP ); // nop
}
// after_call:
// switch from arm to thumb state
cache_addd(0xe2800000 + (templo1 << 12) + (HOST_pc << 16) + (1)); // add templo1, pc, #1
cache_addd(0xe12fff10 + (templo1)); // bx templo1
// thumb state from now on
}
// generate a call to a parameterless function
static void INLINE gen_call_function_raw(void * func) {
cache_checkinstr(18);
gen_call_function_helper(func);
}
// generate a call to a function with paramcount parameters
// note: the parameters are loaded in the architecture specific way
// using the gen_load_param_ functions below
static Bit32u INLINE gen_call_function_setup(void * func,Bitu paramcount,bool fastcall=false) {
cache_checkinstr(18);
Bit32u proc_addr = (Bit32u)cache.pos;
gen_call_function_helper(func);
return proc_addr;
// if proc_addr is on word boundary ((proc_addr & 0x03) == 0)
// then length of generated code is 16 bytes
// otherwise length of generated code is 18 bytes
}
#if (1)
// max of 4 parameters in a1-a4
// load an immediate value as param'th function parameter
static void INLINE gen_load_param_imm(Bitu imm,Bitu param) {
gen_mov_dword_to_reg_imm(param, imm);
}
// load an address as param'th function parameter
static void INLINE gen_load_param_addr(Bitu addr,Bitu param) {
gen_mov_dword_to_reg_imm(param, addr);
}
// load a host-register as param'th function parameter
static void INLINE gen_load_param_reg(Bitu reg,Bitu param) {
gen_mov_regs(param, reg);
}
// load a value from memory as param'th function parameter
static void INLINE gen_load_param_mem(Bitu mem,Bitu param) {
gen_mov_word_to_reg(param, (void *)mem, 1);
}
#else
other arm abis
#endif
// jump to an address pointed at by ptr, offset is in imm
static void gen_jmp_ptr(void * ptr,Bits imm=0) {
gen_mov_word_to_reg(templo3, ptr, 1);
if (imm) {
gen_mov_dword_to_reg_imm(templo2, imm);
cache_checkinstr(2);
cache_addw( ADD_REG(templo3, templo3, templo2) ); // add templo3, templo3, templo2
}
#if (1)
// (*ptr) should be word aligned
if ((imm & 0x03) == 0) {
cache_checkinstr(6);
cache_addw( LDR_IMM(templo2, templo3, 0) ); // ldr templo2, [templo3]
} else
#endif
{
cache_checkinstr(24);
cache_addw( LDRB_IMM(templo2, templo3, 0) ); // ldrb templo2, [templo3]
cache_addw( LDRB_IMM(templo1, templo3, 1) ); // ldrb templo1, [templo3, #1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
cache_addw( LDRB_IMM(templo1, templo3, 2) ); // ldrb templo1, [templo3, #2]
cache_addw( LSL_IMM(templo1, templo1, 16) ); // lsl templo1, templo1, #16
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
cache_addw( LDRB_IMM(templo1, templo3, 3) ); // ldrb templo1, [templo3, #3]
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
}
// increase jmp address to keep thumb state
cache_addw( ADD_IMM3(templo2, templo2, 1) ); // add templo2, templo2, #1
cache_addw( BX(templo2) ); // bx templo2
}
// short conditional jump (+-127 bytes) if register is zero
// the destination is set by gen_fill_branch() later
static Bit32u gen_create_branch_on_zero(HostReg reg,bool dword) {
cache_checkinstr(4);
if (dword) {
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
} else {
cache_addw( LSL_IMM(templo1, reg, 16) ); // lsl templo1, reg, #16
}
cache_addw( BEQ_FWD(0) ); // beq j
return ((Bit32u)cache.pos-2);
}
// short conditional jump (+-127 bytes) if register is nonzero
// the destination is set by gen_fill_branch() later
static Bit32u gen_create_branch_on_nonzero(HostReg reg,bool dword) {
cache_checkinstr(4);
if (dword) {
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
} else {
cache_addw( LSL_IMM(templo1, reg, 16) ); // lsl templo1, reg, #16
}
cache_addw( BNE_FWD(0) ); // bne j
return ((Bit32u)cache.pos-2);
}
// calculate relative offset and fill it into the location pointed to by data
static void INLINE gen_fill_branch(DRC_PTR_SIZE_IM data) {
#if C_DEBUG
Bits len=(Bit32u)cache.pos-(data+4);
if (len<0) len=-len;
if (len>252) LOG_MSG("Big jump %d",len);
#endif
*(Bit8u*)data=(Bit8u)( ((Bit32u)cache.pos-(data+4)) >> 1 );
}
// conditional jump if register is nonzero
// for isdword==true the 32bit of the register are tested
// for isdword==false the lowest 8bit of the register are tested
static Bit32u gen_create_branch_long_nonzero(HostReg reg,bool isdword) {
Bit8u *datapos;
cache_checkinstr(8);
datapos = cache_reservedata();
if (isdword) {
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
} else {
cache_addw( LSL_IMM(templo2, reg, 24) ); // lsl templo2, reg, #24
}
cache_addw( BEQ_FWD(2) ); // beq nobranch (pc+2)
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 4)) ); // ldr templo1, [pc, datapos]
} else {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 2)) ); // ldr templo1, [pc, datapos]
}
cache_addw( BX(templo1) ); // bx templo1
// nobranch:
return ((Bit32u)datapos);
}
// compare 32bit-register against zero and jump if value less/equal than zero
static Bit32u gen_create_branch_long_leqzero(HostReg reg) {
Bit8u *datapos;
cache_checkinstr(8);
datapos = cache_reservedata();
cache_addw( CMP_IMM(reg, 0) ); // cmp reg, #0
cache_addw( BGT_FWD(2) ); // bgt nobranch (pc+2)
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 4)) ); // ldr templo1, [pc, datapos]
} else {
cache_addw( LDR_PC_IMM(templo1, datapos - (cache.pos + 2)) ); // ldr templo1, [pc, datapos]
}
cache_addw( BX(templo1) ); // bx templo1
// nobranch:
return ((Bit32u)datapos);
}
// calculate long relative offset and fill it into the location pointed to by data
static void INLINE gen_fill_branch_long(Bit32u data) {
// this is an absolute branch
*(Bit32u*)data=((Bit32u)cache.pos) + 1; // add 1 to keep processor in thumb state
}
static void gen_run_code(void) {
// switch from arm to thumb state
cache_addd(0xe2800000 + (HOST_r3 << 12) + (HOST_pc << 16) + (1)); // add r3, pc, #1
cache_addd(0xe12fff10 + (HOST_r3)); // bx r3
// thumb state from now on
cache_addw(0xb500); // push {lr}
cache_addw( MOV_LO_HI(HOST_r3, FC_SEGS_ADDR) ); // mov r3, FC_SEGS_ADDR
cache_addw( MOV_LO_HI(HOST_r2, FC_REGS_ADDR) ); // mov r2, FC_REGS_ADDR
cache_addw(0xb4fc); // push {r2,r3,v1-v4}
// adr: 16
cache_addw( LDR_PC_IMM(HOST_r3, 64 - (16 + 4)) ); // ldr r3, [pc, #(&Segs)]
// adr: 18
cache_addw( LDR_PC_IMM(HOST_r2, 68 - (18 + 2)) ); // ldr r2, [pc, #(&cpu_regs)]
cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3
cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2
// align 4
cache_addw( ADD_LO_PC_IMM(HOST_r3, 8) ); // add r3, pc, #8
cache_addw( ADD_IMM8(HOST_r0, 1) ); // add r0, #1
cache_addw( ADD_IMM8(HOST_r3, 1) ); // add r3, #1
cache_addw(0xb408); // push {r3}
cache_addw( BX(HOST_r0) ); // bx r0
cache_addw( NOP ); // nop
// align 4
cache_addw(0xbcfc); // pop {r2,r3,v1-v4}
cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3
cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2
cache_addw(0xbc08); // pop {r3}
cache_addw( BX(HOST_r3) ); // bx r3
// fill up to 64 bytes
cache_addw( NOP ); // nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
// adr: 64
cache_addd((Bit32u)&Segs); // address of "Segs"
// adr: 68
cache_addd((Bit32u)&cpu_regs); // address of "cpu_regs"
}
// return from a function
static void gen_return_function(void) {
cache_checkinstr(4);
cache_addw(0xbc08); // pop {r3}
cache_addw( BX(HOST_r3) ); // bx r3
}
// short unconditional jump (over data pool)
// must emit at most CACHE_DATA_JUMP bytes
static void INLINE gen_create_branch_short(void * func) {
cache_addw( B_FWD((Bit32u)func - ((Bit32u)cache.pos + 4)) ); // b func
}
#ifdef DRC_FLAGS_INVALIDATION
// called when a call to a function can be replaced by a
// call to a simpler function
static void gen_fill_function_ptr(Bit8u * pos,void* fct_ptr,Bitu flags_type) {
if ((*(Bit16u*)pos & 0xf000) == 0xe000) {
if ((*(Bit16u*)pos & 0x0fff) >= ((CACHE_DATA_ALIGN / 2) - 1) &&
(*(Bit16u*)pos & 0x0fff) < 0x0800)
{
pos = (Bit8u *) ( ( ( (Bit32u)(*(Bit16u*)pos & 0x0fff) ) << 1 ) + ((Bit32u)pos + 4) );
}
}
#ifdef DRC_FLAGS_INVALIDATION_DCODE
if (((Bit32u)pos & 0x03) == 0)
{
// try to avoid function calls but rather directly fill in code
switch (flags_type) {
case t_ADDb:
case t_ADDw:
case t_ADDd:
*(Bit16u*)pos=ADD_REG(HOST_a1, HOST_a1, HOST_a2); // add a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_ORb:
case t_ORw:
case t_ORd:
*(Bit16u*)pos=ORR(HOST_a1, HOST_a2); // orr a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_ANDb:
case t_ANDw:
case t_ANDd:
*(Bit16u*)pos=AND(HOST_a1, HOST_a2); // and a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_SUBb:
case t_SUBw:
case t_SUBd:
*(Bit16u*)pos=SUB_REG(HOST_a1, HOST_a1, HOST_a2); // sub a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_XORb:
case t_XORw:
case t_XORd:
*(Bit16u*)pos=EOR(HOST_a1, HOST_a2); // eor a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_CMPb:
case t_CMPw:
case t_CMPd:
case t_TESTb:
case t_TESTw:
case t_TESTd:
*(Bit16u*)pos=B_FWD(12); // b after_call (pc+12)
break;
case t_INCb:
case t_INCw:
case t_INCd:
*(Bit16u*)pos=ADD_IMM3(HOST_a1, HOST_a1, 1); // add a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_DECb:
case t_DECw:
case t_DECd:
*(Bit16u*)pos=SUB_IMM3(HOST_a1, HOST_a1, 1); // sub a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_SHLb:
case t_SHLw:
case t_SHLd:
*(Bit16u*)pos=LSL_REG(HOST_a1, HOST_a2); // lsl a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_SHRb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 24); // lsr a1, a1, #24
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(6); // b after_call (pc+6)
break;
case t_SHRw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 16); // lsr a1, a1, #16
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(6); // b after_call (pc+6)
break;
case t_SHRd:
*(Bit16u*)pos=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_SARb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 24); // asr a1, a1, #24
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(6); // b after_call (pc+6)
break;
case t_SARw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 16); // asr a1, a1, #16
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(6); // b after_call (pc+6)
break;
case t_SARd:
*(Bit16u*)pos=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_RORb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=NOP; // nop
*(Bit16u*)(pos+8)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+10)=NOP; // nop
*(Bit16u*)(pos+12)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+14)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
break;
case t_RORw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+8)=B_FWD(4); // b after_call (pc+4)
break;
case t_RORd:
*(Bit16u*)pos=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
case t_ROLb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+12)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+14)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
break;
case t_ROLw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=NOP; // nop
*(Bit16u*)(pos+12)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+14)=NOP; // nop
break;
case t_ROLd:
*(Bit16u*)pos=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+2)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+4)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+6)=B_FWD(6); // b after_call (pc+6)
break;
case t_NEGb:
case t_NEGw:
case t_NEGd:
*(Bit16u*)pos=NEG(HOST_a1, HOST_a1); // neg a1, a1
*(Bit16u*)(pos+2)=B_FWD(10); // b after_call (pc+10)
break;
default:
*(Bit32u*)( ( ((Bit32u) (*pos)) << 2 ) + ((Bit32u)pos + 4) ) = (Bit32u)fct_ptr; // simple_func
break;
}
}
else
{
// try to avoid function calls but rather directly fill in code
switch (flags_type) {
case t_ADDb:
case t_ADDw:
case t_ADDd:
*(Bit16u*)pos=ADD_REG(HOST_a1, HOST_a1, HOST_a2); // add a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_ORb:
case t_ORw:
case t_ORd:
*(Bit16u*)pos=ORR(HOST_a1, HOST_a2); // orr a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_ANDb:
case t_ANDw:
case t_ANDd:
*(Bit16u*)pos=AND(HOST_a1, HOST_a2); // and a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_SUBb:
case t_SUBw:
case t_SUBd:
*(Bit16u*)pos=SUB_REG(HOST_a1, HOST_a1, HOST_a2); // sub a1, a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_XORb:
case t_XORw:
case t_XORd:
*(Bit16u*)pos=EOR(HOST_a1, HOST_a2); // eor a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_CMPb:
case t_CMPw:
case t_CMPd:
case t_TESTb:
case t_TESTw:
case t_TESTd:
*(Bit16u*)pos=B_FWD(14); // b after_call (pc+14)
break;
case t_INCb:
case t_INCw:
case t_INCd:
*(Bit16u*)pos=ADD_IMM3(HOST_a1, HOST_a1, 1); // add a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_DECb:
case t_DECw:
case t_DECd:
*(Bit16u*)pos=SUB_IMM3(HOST_a1, HOST_a1, 1); // sub a1, a1, #1
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_SHLb:
case t_SHLw:
case t_SHLd:
*(Bit16u*)pos=LSL_REG(HOST_a1, HOST_a2); // lsl a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_SHRb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 24); // lsr a1, a1, #24
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(8); // b after_call (pc+8)
break;
case t_SHRw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(HOST_a1, HOST_a1, 16); // lsr a1, a1, #16
*(Bit16u*)(pos+4)=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+6)=B_FWD(8); // b after_call (pc+8)
break;
case t_SHRd:
*(Bit16u*)pos=LSR_REG(HOST_a1, HOST_a2); // lsr a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_SARb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 24); // asr a1, a1, #24
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(8); // b after_call (pc+8)
break;
case t_SARw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=ASR_IMM(HOST_a1, HOST_a1, 16); // asr a1, a1, #16
*(Bit16u*)(pos+4)=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+6)=B_FWD(8); // b after_call (pc+8)
break;
case t_SARd:
*(Bit16u*)pos=ASR_REG(HOST_a1, HOST_a2); // asr a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_RORb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=NOP; // nop
*(Bit16u*)(pos+8)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+10)=NOP; // nop
*(Bit16u*)(pos+12)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+14)=NOP; // nop
*(Bit16u*)(pos+16)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
break;
case t_RORw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+4)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+6)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+8)=B_FWD(6); // b after_call (pc+6)
break;
case t_RORd:
*(Bit16u*)pos=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
case t_ROLb:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 24); // lsl a1, a1, #24
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 8); // lsr templo1, a1, #8
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+12)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+14)=NOP; // nop
*(Bit16u*)(pos+16)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
break;
case t_ROLw:
*(Bit16u*)pos=LSL_IMM(HOST_a1, HOST_a1, 16); // lsl a1, a1, #16
*(Bit16u*)(pos+2)=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+4)=LSR_IMM(templo1, HOST_a1, 16); // lsr templo1, a1, #16
*(Bit16u*)(pos+6)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+8)=ORR(HOST_a1, templo1); // orr a1, templo1
*(Bit16u*)(pos+10)=NOP; // nop
*(Bit16u*)(pos+12)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+14)=NOP; // nop
*(Bit16u*)(pos+16)=NOP; // nop
break;
case t_ROLd:
*(Bit16u*)pos=NEG(HOST_a2, HOST_a2); // neg a2, a2
*(Bit16u*)(pos+2)=ADD_IMM8(HOST_a2, 32); // add a2, #32
*(Bit16u*)(pos+4)=ROR_REG(HOST_a1, HOST_a2); // ror a1, a2
*(Bit16u*)(pos+6)=B_FWD(8); // b after_call (pc+8)
break;
case t_NEGb:
case t_NEGw:
case t_NEGd:
*(Bit16u*)pos=NEG(HOST_a1, HOST_a1); // neg a1, a1
*(Bit16u*)(pos+2)=B_FWD(12); // b after_call (pc+12)
break;
default:
*(Bit32u*)( ( ((Bit32u) (*pos)) << 2 ) + ((Bit32u)pos + 2) ) = (Bit32u)fct_ptr; // simple_func
break;
}
}
#else
if (((Bit32u)pos & 0x03) == 0)
{
*(Bit32u*)( ( ((Bit32u) (*pos)) << 2 ) + ((Bit32u)pos + 4) ) = (Bit32u)fct_ptr; // simple_func
}
else
{
*(Bit32u*)( ( ((Bit32u) (*pos)) << 2 ) + ((Bit32u)pos + 2) ) = (Bit32u)fct_ptr; // simple_func
}
#endif
}
#endif
#ifdef DRC_USE_SEGS_ADDR
// mov 16bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_seg16_to_reg(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR
cache_addw( LDRH_IMM(dest_reg, templo1, index) ); // ldrh dest_reg, [templo1, #index]
}
// mov 32bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 4 must be zero)
static void gen_mov_seg32_to_reg(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR
cache_addw( LDR_IMM(dest_reg, templo1, index) ); // ldr dest_reg, [templo1, #index]
}
// add a 32bit value from Segs[index] to a full register using FC_SEGS_ADDR (index modulo 4 must be zero)
static void gen_add_seg32_to_reg(HostReg reg,Bitu index) {
cache_checkinstr(6);
cache_addw( MOV_LO_HI(templo1, FC_SEGS_ADDR) ); // mov templo1, FC_SEGS_ADDR
cache_addw( LDR_IMM(templo2, templo1, index) ); // ldr templo2, [templo1, #index]
cache_addw( ADD_REG(reg, reg, templo2) ); // add reg, reg, templo2
}
#endif
#ifdef DRC_USE_REGS_ADDR
// mov 16bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_regval16_to_reg(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDRH_IMM(dest_reg, templo2, index) ); // ldrh dest_reg, [templo2, #index]
}
// mov 32bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_mov_regval32_to_reg(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDR_IMM(dest_reg, templo2, index) ); // ldr dest_reg, [templo2, #index]
}
// move a 32bit (dword==true) or 16bit (dword==false) value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_regword_to_reg(HostReg dest_reg,Bitu index,bool dword) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
if (dword) {
cache_addw( LDR_IMM(dest_reg, templo2, index) ); // ldr dest_reg, [templo2, #index]
} else {
cache_addw( LDRH_IMM(dest_reg, templo2, index) ); // ldrh dest_reg, [templo2, #index]
}
}
// move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_regbyte_to_reg_low(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDRB_IMM(dest_reg, templo2, index) ); // ldrb dest_reg, [templo2, #index]
}
// move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_regbyte_to_reg_low_canuseword(HostReg dest_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDRB_IMM(dest_reg, templo2, index) ); // ldrb dest_reg, [templo2, #index]
}
// add a 32bit value from cpu_regs[index] to a full register using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_add_regval32_to_reg(HostReg reg,Bitu index) {
cache_checkinstr(6);
cache_addw( MOV_LO_HI(templo2, FC_REGS_ADDR) ); // mov templo2, FC_REGS_ADDR
cache_addw( LDR_IMM(templo1, templo2, index) ); // ldr templo1, [templo2, #index]
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
}
// move 16bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 2 must be zero)
static void gen_mov_regval16_from_reg(HostReg src_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
cache_addw( STRH_IMM(src_reg, templo1, index) ); // strh src_reg, [templo1, #index]
}
// move 32bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_mov_regval32_from_reg(HostReg src_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
cache_addw( STR_IMM(src_reg, templo1, index) ); // str src_reg, [templo1, #index]
}
// move 32bit (dword==true) or 16bit (dword==false) of a register into cpu_regs[index] using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero)
static void gen_mov_regword_from_reg(HostReg src_reg,Bitu index,bool dword) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
if (dword) {
cache_addw( STR_IMM(src_reg, templo1, index) ); // str src_reg, [templo1, #index]
} else {
cache_addw( STRH_IMM(src_reg, templo1, index) ); // strh src_reg, [templo1, #index]
}
}
// move the lowest 8bit of a register into cpu_regs[index] using FC_REGS_ADDR
static void gen_mov_regbyte_from_reg_low(HostReg src_reg,Bitu index) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo1, FC_REGS_ADDR) ); // mov templo1, FC_REGS_ADDR
cache_addw( STRB_IMM(src_reg, templo1, index) ); // strb src_reg, [templo1, #index]
}
#endif